scholarly journals The use of a rat model to evaluate the in vivo toxicity and wound healing activity of selected Combretum and Terminalia (Combretaceae) species extracts

Author(s):  
Peter Masoko ◽  
Jackie Picard ◽  
Jacobus N. Eloff

Wound healing is a fundamental response to tissue injury and several natural products have been shown to accelerate the healing process. The present study was undertaken to determine the safety and efficacy of the topical treatment of acetone leaf extracts of Combretum imberbe, Combretum nelsonii,Combretum albopuntactum and Terminalia sericea based on their in vitro antimicrobial activity. Four circular full-thickness skin wounds were made on the backs of eight anaesthetised Wistar rats using aseptic techniques. The treatments were administrated topically using 10% and 20% concentrations of each extract in aqueous cream in separate treatments. Indications of erythema, exudate, crust formation,swelling and ulceration were used to determine the wound healing process. All of the wounds closed completely within 17 days. Throughout the experiment, a subcutaneous probe was used to determine that the body temperature and body weight of the rats were within the normal range. C. imberbe and C. nelsonii extracts accelerated wound healing, but there was no significant difference in wound contraction using 10% and 20% concentrations of the extracts in cream. The results also showed the potential usefulness of this model to measure accelerating wound healing.The extracts could perhaps overcome defects associated with healing failure in chronic wounds and prevent secondary bacterial and fungal infections.

2021 ◽  
Vol 5 (3) ◽  
pp. 095-104
Author(s):  
IM Cardoso-Daodu ◽  
CP Azubuike ◽  
MO Ilomuanya

Chronic wounds occur when one wound healing process or a sequence of wound healing events are affected resulting in slow healing of the wound thereby placing the patient in deep pain. Various diseases and conditions can delay the process of wound healing. Wound healing can be classified into four main stages: hemostasis, inflammation, remodeling, and scar tissue formation with each phase overlapping one another. The skin is the largest organ in the body. It protects the entire external surface of the human body and is the primary site of interaction with the outside environment. There is therefore a need to fabricate an ideal dressing through scientific research and investigations. Hydrogels are a three-dimensional network of hydrophilic polymers that can swell in water and absorb copious amounts of water while maintaining their structure because of their chemical or physical crosslinking of individual polymer chains. A hydrogel must be composed of at least 10% water. Hydrogels possess the flexibility and water percentage which is remarkably like tissues. They are biocompatible and biodegradable which makes them ideal for dermal wound healing.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4610
Author(s):  
Hye-Jin Lee ◽  
Moses Jeong ◽  
Young-Guk Na ◽  
Sung-Jin Kim ◽  
Hong-Ki Lee ◽  
...  

Nanostructured lipid carriers (NLC) are capable of encapsulating hydrophilic and lipophilic drugs. The present study developed an NLC containing epidermal growth factor (EGF) and curcumin (EGF–Cur-NLC). EGF–Cur-NLC was prepared by a modified water-in-oil-in-water (w/o/w) double-emulsion method. The EGF–Cur-NLC particles showed an average diameter of 331.8 nm and a high encapsulation efficiency (81.1% and 99.4% for EGF and curcumin, respectively). In vitro cell studies were performed using two cell types, NIH 3T3 fibroblasts and HaCaT keratinocytes. The results showed no loss of bioactivity of EGF in the NLC formulation. In addition, EGF–Cur-NLC improved in vitro cell migration, which mimics the wound healing process. Finally, EGF–Cur-NLC was evaluated in a chronic wound model in diabetic rats. We found that EGF–Cur-NLC accelerated wound closure and increased the activity of antioxidant enzymes. Overall, these results reveal the potential of the NLC formulation containing EGF and curcumin to promote healing of chronic wounds.


Author(s):  
Aakansha Giri Goswami ◽  
Somprakas Basu ◽  
Vijay Kumar Shukla

While “population aging” is an accomplishment that deserves acclamation, it is in itself a tremendous challenge. Age-related skin changes, impaired wound healing, and concurrent comorbidities are the deadly triad that contribute most to the development of nonhealing chronic wounds in the elderly. This imposes enormous medical, social, and financial burden. With the rising trend in the aging population, this problem is likely to exacerbate unless multidisciplinary, rapt wound care strategies are developed. The last decade was dedicated to understand the basic biology underlying the wound healing process but most in vitro and animal model studies translated poorly to human conditions. Forthcoming, the focus is on the development of diagnostic and therapeutic strategies to improve healing in this vulnerable age group. Further, understanding the complex pathobiology of cellular senescence and wound healing process is required to develop focused therapy for these “problem wounds” in the elderly.


2019 ◽  
Vol 73 ◽  
pp. 768-781
Author(s):  
Marta Kędzierska ◽  
Katarzyna Miłowska

Wound healing is a complex process that engages skin cells, the blood, the immune system and a number of circulating substances in the body. Infections, contamination of the wound or a vast area of damage complicate and delay the natural process of skin regeneration. The incidence of hard-to-heal wounds is an increasingly common problem, because they can significantly impair the quality of life of the patient. For this reason, it is extremely important to look for factors (drugs, dressings or other substances) that could accelerate and relieve wound healing. Among many compounds in the area of medical engineering interest, attention should be paid to natural polysaccharides, e.g. chitosan and alginate. This article is devoted to biomaterials that play an important role in the treatment of chronic wounds. These include the following: hydrogels, non-wovens, membranes and chitosan sponges as well as chitosan-alginate composites or chitosan composites combined with zinc oxide and nanosilver. The material, which has chitosan as a base, works on all stages of the healing process. Many in vitro, in vivo and clinical studies that provide the basis for using chitosan materials as a substitute for conventional bandages and dressings have been carried out. At the stage of hemostasis, it accelerates platelet aggregation and the formation of a fibrin clot. In the inflamed stage, they cause the proliferation of neutrophils and macrophages that cleanse the wound, releasing cytokines at the wound site. Studies have shown that chitosan mimics the native extracellular matrix, providing the optimal microenvironment for the wound.


2021 ◽  
Vol 9 (6) ◽  
pp. 855-862
Author(s):  
Munna Khan ◽  
Shaila P.S.M.A. Sirdeshmukh

A wound, in clinical terms, is any tissue injury that causes skin rupture which penetrates epidermis and dermis layers leading to uncovering of underneath tissues or organs. Wounds can be superficial or deep, acute or chronic, with minor to serious implications depending on the source, extent, and location. Pulsed Electromagnetic Fields (PEMF) may have varying effects depending on the type of target tissue. Triggering a biological event requires a specific signal to be applied. The effectiveness of a PEMF device is mostly determined by the waveforms utilized in conjunction with the pulsing frequency. Choosing the right PEMF signal is a crucial step in developing a device that can address the challenges associated with chronic wound healing and speed up the healing process. Therefore, the optimization of the signal generator unit in the PEMF system for wound healing applications is a necessity before starting the further process. Hence, the present work of optimization of the PEMF system was carried out by selecting an optimal signal on the signal generator which produces a significant quantity of current in the particular tissue site to provide improved wound healing results. A total of 120 signal generator designs were simulated and optimized to six signal generators having frequencies of 10Hz, 20Hz, 30Hz, 40Hz, 50Hz, and 100Hz and duty cycle 25%. For both groups, the average frequency and duty cycle were calculated and tested using independent samples t-test to see if there were any differences between them. No statistically significant difference was found for frequency (p=0.9977) and duty cycle (p=0.5090). Because of the necessity of the right PEMF signal selection for every trial to be successful, this work will act as a gateway for selecting, understanding,` and considering the proper signal which could initiate the respective biological effect and accelerate the wound healing process.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3656
Author(s):  
Mazlan Zawani ◽  
Mh Busra Fauzi

Immediate treatment for cutaneous injuries is a realistic approach to improve the healing rate and minimise the risk of complications. Multifunctional biomaterials have been proven to be a potential strategy for chronic skin wound management, especially for future advancements in precision medicine. Hence, antioxidant incorporated biomaterials play a vital role in the new era of tissue engineering. A bibliographic investigation was conducted on articles focusing on in vitro, in vivo, and clinical studies that evaluate the effect and the antioxidants mechanism exerted by epigallocatechin gallate (EGCG) in wound healing and its ability to act as reactive oxygen species (ROS) scavengers. Over the years, EGCG has been proven to be a potent antioxidant efficient for wound healing purposes. Therefore, several novel studies were included in this article to shed light on EGCG incorporated biomaterials over five years of research. However, the related papers under this review’s scope are limited in number. All the studies showed that biomaterials with scavenging ability have a great potential to combat chronic wounds and assist the wound healing process against oxidative damage. However, the promising concept has faced challenges extending beyond the trial phase, whereby the implementation of these biomaterials, when exposed to an oxidative stress environment, may disrupt cell proliferation and tissue regeneration after transplantation. Therefore, thorough research should be executed to ensure a successful therapy.


2020 ◽  
Vol 9 (2) ◽  
pp. 82-87
Author(s):  
Ari Damayanti Wahyuningrum

Circumcision is a minor surgical procedure permormed as a modification of part the body by making an incision in the prepurtium of a part of the body by making incision in the prepurtium. The prepurtium that has not been circumcised has bacterial colonies which are risk factor for urinary tract infections. The insidence rate of urinary tract infections in Indonesia in infants who have not been circumcised under 1 year is 35% and children over 1 year are 22% of 200 children. The tecnology that eveloved in circumcision from the conventional methode of suture has shifted to the modern method of seamless circumcision. This study aims to compare the clamp and glue methods to the wound healing process after circumcision in chlidren. The research method was cohort with comparative statistical analysis of Pvalue 0.000<0.05 so there is a significant difference between the result of the klamp method ang glue in the healing process. Where the wound healing process in the glue method is much faster than the klamp method because it is more optimal in the hemostasis and inflammation phase because there are no foreign object namely the klamp.   Keywords: Modern circumcision, Klamp, Glue, Wound Healing.


Author(s):  
Manoj Kumar ◽  
Amareshappa . ◽  
Anjali Bharadwaj ◽  
Shailaja S. V.

Wound healing has been the burning problem in a surgical practice because of a remarkable increase in the number of traumatic cases. A wound causes a number of changes in the body that can affect the healing process, including changes in energy, protein, carbohydrate, fat, vitamin and mineral metabolism. Various Ayurveda literatures, particularly, Sushruta Samhita, which is said to be an ancient textbook of surgery in Ayurveda, has mentioned about the diet for the person suffering from the wound, and the author said that diet plays a very important role in the wound healing process. Sushruta - The father of surgery has scientifically classified it in a systemic manner, whose wealth of clinical material and the principles of management are valid even today. Shalya Tantra (surgical branch in Ayurveda Science) is one of the important branch of Ayurveda, in which surgical and para-surgical techniques has described for management of various diseases. Vrana is the most important and widely described chapter of Shalya Tantra. Vrana (wound) is one of them, which have been managed by human being from starting of civilization. Under the circumstances, the first thing which the men came across was the injury from different sources which caused him the Vrana. Vrana is seen as debilitating and scaring disorder, usually seen affecting the human being at any age. Well balanced nutrition plays an essential role in the wound healing.


2021 ◽  
Vol 22 (8) ◽  
pp. 4087
Author(s):  
Maria Quitério ◽  
Sandra Simões ◽  
Andreia Ascenso ◽  
Manuela Carvalheiro ◽  
Ana Paula Leandro ◽  
...  

Insulin is a peptide hormone with many physiological functions, besides its use in diabetes treatment. An important role of insulin is related to the wound healing process—however, insulin itself is too sensitive to the external environment requiring the protective of a nanocarrier. Polymer-based nanoparticles can protect, deliver, and retain the protein in the target area. This study aims to produce and characterize a topical treatment for wound healing consisting of insulin-loaded poly-DL-lactide/glycolide (PLGA) nanoparticles. Insulin-loaded nanoparticles present a mean size of approximately 500 nm and neutral surface charge. Spherical shaped nanoparticles are observed by scanning electron microscopy and confirmed by atomic force microscopy. SDS-PAGE and circular dichroism analysis demonstrated that insulin preserved its integrity and secondary structure after the encapsulation process. In vitro release studies suggested a controlled release profile. Safety of the formulation was confirmed using cell lines, and cell viability was concentration and time-dependent. Preliminary safety in vivo assays also revealed promising results.


2021 ◽  
Vol 165 ◽  
pp. 39
Author(s):  
Francesca Lombardi ◽  
Silvano Santini ◽  
Paola Palumbo ◽  
Valeria Cordone ◽  
Virginio Bignotti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document