scholarly journals PREPACT 2.0: Predicting C-to-U and U-to-C RNA Editing in Organelle Genome Sequences with Multiple References and Curated RNA Editing Annotation

2013 ◽  
Vol 7 ◽  
pp. BBI.S11059 ◽  
Author(s):  
Henning Lenz ◽  
Volker Knoop

RNA editing is vast in some genetic systems, with up to thousands of targeted C-to-U and U-to-C substitutions in mitochondria and chloroplasts of certain plants. Efficient prognoses of RNA editing in organelle genomes will help to reveal overlooked cases of editing. We present PREPACT 2.0 ( http://www.prepact.de ) with numerous enhancements of our previously developed Plant RNA Editing Prediction & Analysis Computer Tool. Reference organelle transcriptomes for editing prediction have been extended and reorganized to include 19 curated mitochondrial and 13 chloroplast genomes, now allowing to distinguish RNA editing sites from “pre-edited” sites. Queries may be run against multiple references and a new “commons” function identifies and highlights orthologous candidate editing sites congruently predicted by multiple references. Enhancements to the BLASTX mode in PREPACT 2.0 allow querying of complete novel organelle genomes within a few minutes, identifying protein genes and candidate RNA editing sites simultaneously without prior user analyses.

2020 ◽  
Vol 9 (15) ◽  
Author(s):  
Bianca Frommer ◽  
Daniela Holtgräwe ◽  
Ludger Hausmann ◽  
Prisca Viehöver ◽  
Bruno Huettel ◽  
...  

Genomic long reads of the interspecific grapevine rootstock cultivar ‘Börner’ (Vitis riparia GM183 × Vitis cinerea Arnold) were used to assemble its chloroplast and mitochondrion genome sequences. We annotated 133 chloroplast and 172 mitochondrial genes, including the RNA editing sites. The organelle genomes in ‘Börner’ were maternally inherited from Vitis riparia.


2009 ◽  
Vol 56 (2) ◽  
pp. 189-201 ◽  
Author(s):  
Henning Lenz ◽  
Mareike Rüdinger ◽  
Ute Volkmar ◽  
Simon Fischer ◽  
Stefan Herres ◽  
...  

Plants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 51 ◽  
Author(s):  
Yamuna Somaratne ◽  
De-Long Guan ◽  
Wen-Qiang Wang ◽  
Liang Zhao ◽  
Sheng-Quan Xu

The genus Lespedeza (tribe: Desmodieae) consists of about 40 species that have high medicinal and economic value. However, in this genus, using morphological characters, the species identification is quite complicated, which can be solved by the analysis of the complete chloroplast genomes. As primary organelle genomes, the complete genome sequences of chloroplasts (cp) provide unique molecular information to study the divergence of species, RNA editing, and phylogeny. Therefore, to the best of our knowledge, for the first time, we sequenced the complete cp genomes of two representative Lespedeza species: Lespedeza davurica and Lespedeza cuneata. The cp genomes of both the species were found to be 149,010 bp in length, exhibiting the typical angiosperm chloroplast structure containing four regions. The Lespedeza cp genomes showed similar conserved gene contents, order, and orientations with a total GC content of 35.0%. A total of 128 genes, including 83 protein-coding genes, 37 tRNAs, and eight rRNAs, were identified from each genome. Unique molecular features of the two Lespedeza cp genome sequences were obtained by performing the analysis of repeats, sequence divergence, codon usage, and predicting the RNA editing sites in addition to phylogenetic analysis with other key genera in tribe Desmodieae. Using the two datasets, the phylogenetic relationship of Lespedeza species among Deasmodieae was discovered, suggesting that whole cp genomes provided useful information for phylogenetic studies of these species.


2021 ◽  
Vol 22 (4) ◽  
pp. 2104
Author(s):  
Pedro Robles ◽  
Víctor Quesada

Eleven published articles (4 reviews, 7 research papers) are collected in the Special Issue entitled “Organelle Genetics in Plants.” This selection of papers covers a wide range of topics related to chloroplasts and plant mitochondria research: (i) organellar gene expression (OGE) and, more specifically, chloroplast RNA editing in soybean, mitochondria RNA editing, and intron splicing in soybean during nodulation, as well as the study of the roles of transcriptional and posttranscriptional regulation of OGE in plant adaptation to environmental stress; (ii) analysis of the nuclear integrants of mitochondrial DNA (NUMTs) or plastid DNA (NUPTs); (iii) sequencing and characterization of mitochondrial and chloroplast genomes; (iv) recent advances in plastid genome engineering. Here we summarize the main findings of these works, which represent the latest research on the genetics, genomics, and biotechnology of chloroplasts and mitochondria.


2021 ◽  
Vol 22 (9) ◽  
pp. 4484
Author(s):  
Ewa Filip ◽  
Lidia Skuza

Horizontal gene transfer (HGT)- is defined as the acquisition of genetic material from another organism. However, recent findings indicate a possible role of HGT in the acquisition of traits with adaptive significance, suggesting that HGT is an important driving force in the evolution of eukaryotes as well as prokaryotes. It has been noted that, in eukaryotes, HGT is more prevalent than originally thought. Mitochondria and chloroplasts lost a large number of genes after their respective endosymbiotic events occurred. Even after this major content loss, organelle genomes still continue to lose their own genes. Many of these are subsequently acquired by intracellular gene transfer from the original plastid. The aim of our review was to elucidate the role of chloroplasts in the transfer of genes. This review also explores gene transfer involving mitochondrial and nuclear genomes, though recent studies indicate that chloroplast genomes are far more active in HGT as compared to these other two DNA-containing cellular compartments.


2020 ◽  
Author(s):  
Bianca Frommer ◽  
Daniela Luise Holtgräwe ◽  
Ludger Hausmann ◽  
Prisca Viehöver ◽  
Bruno Hüttel ◽  
...  

Genomic long reads of the interspecific grapevine rootstock cultivar 'Börner' (Vitis riparia GM183 x Vitis cinerea Arnold) were used to assemble its chloroplast and mitochondrion genome sequences. We annotated 133 chloroplast and 172 mitochondrial genes including the RNA-editing sites. The organellar genomes were maternally inherited to 'Börner' from Vitis riparia.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2165 ◽  
Author(s):  
Xiao Zhang ◽  
Tao Zhou ◽  
Jia Yang ◽  
Jingjing Sun ◽  
Miaomiao Ju ◽  
...  

Cucurbitaceae is the fourth most important economic plant family with creeping herbaceous species mainly distributed in tropical and subtropical regions. Here, we described and compared the complete chloroplast genome sequences of ten representative species from Cucurbitaceae. The lengths of the ten complete chloroplast genomes ranged from 155,293 bp (C. sativus) to 158,844 bp (M. charantia), and they shared the most common genomic features. 618 repeats of three categories and 813 microsatellites were found. Sequence divergence analysis showed that the coding and IR regions were highly conserved. Three protein-coding genes (accD, clpP, and matK) were under selection and their coding proteins often have functions in chloroplast protein synthesis, gene transcription, energy transformation, and plant development. An unconventional translation initiation codon of psbL gene was found and provided evidence for RNA editing. Applying BI and ML methods, phylogenetic analysis strongly supported the position of Gomphogyne, Hemsleya, and Gynostemma as the relatively original lineage in Cucurbitaceae. This study suggested that the complete chloroplast genome sequences were useful for phylogenetic studies. It would also determine potential molecular markers and candidate DNA barcodes for coming studies and enrich the valuable complete chloroplast genome resources of Cucurbitaceae.


2021 ◽  
Vol 22 (18) ◽  
pp. 9842
Author(s):  
Zheng-Shan He ◽  
Andan Zhu ◽  
Jun-Bo Yang ◽  
Weishu Fan ◽  
De-Zhu Li

Posttranscriptional modifications, including intron splicing and RNA editing, are common processes during regulation of gene expression in plant organelle genomes. However, the intermediate products of intron-splicing, and the interplay between intron-splicing and RNA-editing were not well studied. Most organelle transcriptome analyses were based on the Illumina short reads which were unable to capture the full spectrum of transcript intermediates within an organelle. To fully investigate the intermediates during intron splicing and the underlying relationships with RNA editing, we used PacBio DNA-seq and Iso-seq, together with Illumina short reads genome and transcriptome sequencing data to assemble the chloroplast and mitochondrial genomes of Nymphaea ‘Joey Tomocik’ and analyze their posttranscriptional features. With the direct evidence from Iso-seq, multiple intermediates partially or fully intron-spliced were observed, and we also found that both cis- and trans-splicing introns were spliced randomly. Moreover, by using rRNA-depleted and non-Oligo(dT)-enrichment strand-specific RNA-seq data and combining direct SNP-calling and transcript-mapping methods, we identified 98 and 865 RNA-editing sites in the plastome and mitogenome of N. ‘Joey Tomocik’, respectively. The target codon preference, the tendency of increasing protein hydrophobicity, and the bias distribution of editing sites are similar in both organelles, suggesting their common evolutionary origin and shared editing machinery. The distribution of RNA editing sites also implies that the RNA editing sites in the intron and exon regions may splice synchronously, except those exonic sites adjacent to intron which could only be edited after being intron-spliced. Our study provides solid evidence for the multiple intermediates co-existing during intron-splicing and their interplay with RNA editing in organelle genomes of a basal angiosperm.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e6032 ◽  
Author(s):  
Zhenyu Zhao ◽  
Xin Wang ◽  
Yi Yu ◽  
Subo Yuan ◽  
Dan Jiang ◽  
...  

Dioscorea L., the largest genus of the family Dioscoreaceae with over 600 species, is not only an important food but also a medicinal plant. The identification and classification of Dioscorea L. is a rather difficult task. In this study, we sequenced five Dioscorea chloroplast genomes, and analyzed with four other chloroplast genomes of Dioscorea species from GenBank. The Dioscorea chloroplast genomes displayed the typical quadripartite structure of angiosperms, which consisted of a pair of inverted repeats separated by a large single-copy region, and a small single-copy region. The location and distribution of repeat sequences and microsatellites were determined, and the rapidly evolving chloroplast genome regions (trnK-trnQ, trnS-trnG, trnC-petN, trnE-trnT, petG-trnW-trnP, ndhF, trnL-rpl32, and ycf1) were detected. Phylogenetic relationships of Dioscorea inferred from chloroplast genomes obtained high support even in shortest internodes. Thus, chloroplast genome sequences provide potential molecular markers and genomic resources for phylogeny and species identification.


2018 ◽  
Vol 6 (1) ◽  
Author(s):  
Auricélia Matos da Gama ◽  
Luiz Gustavo de Almeida ◽  
Tetsuo Yamane ◽  
Beny Spira

ABSTRACT The draft genome sequences of two Chromobacterium violaceum strains isolated from the Rio Negro are reported here. These bacteria carry most genetic systems associated with the production of bioactive compounds, but unlike other C. violaceum strains, they lack a dedicated operon for arsenic resistance.


Sign in / Sign up

Export Citation Format

Share Document