INFLUENCE OF POPULATION ON WHITE LUPIN MORPHOLOGY AND YIELD

1989 ◽  
Vol 69 (1) ◽  
pp. 161-170 ◽  
Author(s):  
WILLIAM M. CLAPHAM ◽  
DIANE ELBERT-MAY

The influence of plant population on sweet white lupin (Lupinus albus L. ’Ultra’) growth and production were investigated during 1985 and 1987. In 1985, white lupin was sown at populations of 11, 20, 44 and 178 plants m−2, and in 1987 populations of 20, 44, and 100 plants m−2. Plant density had a significant influence on seed and total plant yields and yield components. Seed yields ranged between 2182 and 3708 kg ha−1, and total plant forage yields (at maximum LAI) ranged between 2044 and 11 501 kg ha−1 at populations of 11 to 178 plants m−2. Main-stem and lateral pods, seed pod−1, potential fruiting sites and lateral branch number were inversely proportional to plant density. Lateral pod production was more sensitive to population pressure than main-stem pod production. The number of lateral pods plant−1 was a linear function, whereas the number of main-stem pods plant−1 was a curvilinear function of the inverse of plant population.Key words: Lupinus albus, L. ’Ultra’, physiologic maturity, flower and fruit potential, lupin

2021 ◽  
Vol 22 (8) ◽  
pp. 3856
Author(s):  
Sandra Rychel-Bielska ◽  
Anna Surma ◽  
Wojciech Bielski ◽  
Bartosz Kozak ◽  
Renata Galek ◽  
...  

White lupin (Lupinus albus L.) is a pulse annual plant cultivated from the tropics to temperate regions for its high-protein grain as well as a cover crop or green manure. Wild populations are typically late flowering and have high vernalization requirements. Nevertheless, some early flowering and thermoneutral accessions were found in the Mediterranean basin. Recently, quantitative trait loci (QTLs) explaining flowering time variance were identified in bi-parental population mapping, however, phenotypic and genotypic diversity in the world collection has not been addressed yet. In this study, a diverse set of white lupin accessions (n = 160) was phenotyped for time to flowering in a controlled environment and genotyped with PCR-based markers (n = 50) tagging major QTLs and selected homologs of photoperiod and vernalization pathway genes. This survey highlighted quantitative control of flowering time in white lupin, providing statistically significant associations for all major QTLs and numerous regulatory genes, including white lupin homologs of CONSTANS, FLOWERING LOCUS T, FY, MOTHER OF FT AND TFL1, PHYTOCHROME INTERACTING FACTOR 4, SKI-INTERACTING PROTEIN 1, and VERNALIZATION INDEPENDENCE 3. This revealed the complexity of flowering control in white lupin, dispersed among numerous loci localized on several chromosomes, provided economic justification for future genome-wide association studies or genomic selection rather than relying on simple marker-assisted selection.


2014 ◽  
pp. 133-137
Author(s):  
Gabriella Tóth ◽  
Ferenc Borbély

The lupine is very sensitive to the different ecological conditions. The examinations of lupine was started in 2003 and our aim is determine yield components which directly affecting crop yields (flower, pod and seed number per plants) in different sowing times (3 times, two weeks apart) and growing area area (240, 480, 720 cm2) combinations. According to our results the sowing times, the growing area and the meteorological conditions are influence on yield significantly. Our data suggest that the early sowing and large growing area combination is favourable to rate of fertilized plants and to development of yield. Later sowing reduces the seed yield depending on the cropyear. In our experiment, the decrease of yield was in the unfavourable year (2003) 20–96%, and in the most favourable meteorological conditions (2004) 10–79%, and in rich rainfall year (2005) 15–88%.


Horticulturae ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 302
Author(s):  
Miguel A. Quiñones ◽  
Susana Fajardo ◽  
Mercedes Fernández-Pascual ◽  
M. Mercedes Lucas ◽  
José J. Pueyo

Two white lupin (Lupinus albus L.) cultivars were tested for their capacity to accumulate mercury when grown in Hg-contaminated soils. Plants inoculated with a Bradyrhizobium canariense Hg-tolerant strain or non-inoculated were grown in two highly Hg-contaminated soils. All plants were nodulated and presented a large number of cluster roots. They accumulated up to 600 μg Hg g−1 DW in nodules, 1400 μg Hg g−1 DW in roots and 2550 μg Hg g−1 DW in cluster roots. Soil, and not cultivar or inoculation, was accountable for statistically significant differences. No Hg translocation to leaves or seeds took place. Inoculated L. albus cv. G1 plants were grown hydroponically under cluster root-promoting conditions in the presence of Hg. They accumulated about 500 μg Hg g−1 DW in nodules and roots and up to 1300 μg Hg g−1 DW in cluster roots. No translocation to the aerial parts occurred. Bioaccumulation factors were also extremely high, especially in soils and particularly in cluster roots. To our knowledge, Hg accumulation in cluster roots has not been reported to date. Our results suggest that inoculated white lupin might represent a powerful phytoremediation tool through rhizosequestration of Hg in contaminated soils. Potential uptake and immobilization mechanisms are discussed.


1999 ◽  
Vol 133 (2) ◽  
pp. 141-150 ◽  
Author(s):  
G. F. J. MILFORD ◽  
I. F. SHIELD ◽  
H. J. STEVENSON ◽  
T. SCOTT ◽  
J. E. LEACH

Pod and seed growth were studied in two experiments in which the plant's source-sink relationships were modified by (a) manually pruning an autumn-sown, indeterminate white lupin variety, Lunoble, to a determinate form, and (b) by growing a determinate variety, Lucyane, at densities ranging from 7 to 35 plants/m2. The pruning experiments indicated that the faster pod growth rate of determinate genotypes was not an inherent genetic trait but an indirect physiological consequence of the plant's changed architecture. In the density experiment, crop dry matter (DM) and nitrogen (N) were maximum at the end of pod extension in late July and similar across the plant density range at c. 12 t DM and 320 kg N/ha. Therefore, the amount of dry matter per plant decreased proportionately with the increase in plant number. The DM and N contents of the pod walls were also maximum at the end of pod extension, but seeds contained only a third of their final DM and a quarter of their final N. Protein accumulation during the final stages of seed growth, therefore, depended on the remobilization of nitrogen from other plant organs, primarily the leaves and pod walls. Nitrogen withdrawn from the leaves accounted for 44% of the gain in the pods, and N withdrawn from pod walls for 50–60% of the gain in the seed.Seed number/m2 was the major yield component. Seeds and pods mainly aborted during early development, but seed number per pod was also decreased by some seed abortion after full pod extension, especially in first-order pods of plants grown at high density. The number of late-aborted seeds was negatively correlated with the amount of N remobilized from the pod wall. In determinate lupins, which have highly synchronous flowering and pod development, the large and sudden remobilization of nitrogen from leaves and pod walls for seed growth and protein accumulation triggered crop senescence.


1985 ◽  
Vol 49 (6) ◽  
pp. 1775-1783 ◽  
Author(s):  
Satoshi TAHARA ◽  
John L. INGHAM ◽  
Junya MIZUTANI

2011 ◽  
Vol 26 (3) ◽  
pp. 193-199 ◽  
Author(s):  
A. Folgart ◽  
A. J. Price ◽  
E. van Santen ◽  
G. R. Wehtje

AbstractLegumes such as white lupin (Lupinus albus L.) provide a valuable nitrogen source in organic agriculture. With organic farming hectarage increasing and white lupin interest increasing in the southeastern USA due to newly released winter hardy cultivars, non-chemical weed control practices in lupin are needed. A two-year experiment was established at two locations in Alabama. Five weed control practices were evaluated: one pre-emergence (PRE)-applied herbicide (S-metolachlor), two mechanical (hand hoed) and two cultural (living mulch utilizing two black oat cultivars) weed control treatments. Fourteen weed species were encountered. S-metolachlor provided above 80% control of most weed species present in this experiment. The cultivation treatments and black oat companion crops also provided good weed control of many of the weeds encountered. Crop injury of all treatments was low on a 0 to 10 scale with 0 representing no injury: <2.0, <1.3 and <1.2 by S-metolachlor, the cultivation treatments and the black oat companion crops, respectively. Grain yield of cultivars ABL 1082, AU Alpha and AU Homer were 1540, 1130, 850 kg ha−1, respectively, when treated with the conventional treatment, S-metolachlor. Grain yield in the organic treatments was equivalent. The cultivation treatments and black oat companions were successful alternative weed control practices in white lupin production.


2007 ◽  
Vol 102 (1) ◽  
pp. 45-49 ◽  
Author(s):  
B. Uzun ◽  
C. Arslan ◽  
M. Karhan ◽  
C. Toker

Sign in / Sign up

Export Citation Format

Share Document