Effects of coarse fragment content on soil physical properties, soil erosion and potato production

2007 ◽  
Vol 87 (5) ◽  
pp. 565-577 ◽  
Author(s):  
T L Chow ◽  
H W Rees ◽  
J O Monteith ◽  
P. Toner ◽  
J. Lavoie

Most potato (Solanum tuberosum L.) production in northeastern America is on till soils with an abundance of stones. Stone picking has removed many coarse fragments to a point that it might be detrimental to soil quality. This study was to assess the impacts of coarse fragment content (10–19 mm in diameter) on selected soil physical properties, field soil thermal and water regimes, runoff and soil loss and potato yield and tuber quality on a sandy loam soil in New Brunswick. The objectives were to evaluate both beneficial and adverse effects of coarse fragment content (0, 10, 20 and 30% by volume) on soil quality in relation to potato production over a 4-yr period. Soil bulk density increased significantly by incorporating 10 to 30% coarse fragments into the plow layer. Porosity and available soil water-holding capacity were reduced in response to this increase in bulk density. In spite of the reduction in total porosity, pore size greater than 148 µm diameter of the 30% coarse fragment treatment was significantly greater than the 0, 10 and 20% treatments during 2001, 1 yr after the treatments were applied. This increase in macropores may have been responsible for the significantly higher saturated hydraulic conductivity of the soil treated with 30% coarse fragments. The results from 2002 and 2003 show that these beneficial effects on soil physical properties were short lived in this study; however, this may not be the case under field conditions because experimental plot problems of relocation of coarse fragments beyond plot boundaries and/or dilution with incorporation of stone-free subsoil material is not an issue in the field. Volumetric water content at field capacity of −33.3 kPa matric potential declined from 20.9% for the control to 7.7% for the 30% coarse fragment treatment. Cumulative soil heat greater than 10°C of the 30% treatment showed significant increases of 11.2, 8.8, and 3.7% during the growing season of 2001, 2002, and 2003, respectively, as compared with the control. Although field soil water tension regimes revealed that soil water in different treatments was held at a somewhat similar energy status, field soil water content was reduced considerably with increasing amount of coarse fragments. No significant differences in runoff and soil loss were found between treatments, but average reductions in soil loss over the 3-yr period were 9, 36, and 47% lower than the control for the 10, 20, and 30% treatments, respectively. Although no significant difference in yield and tuber quality between treatments was found in 2001–2003, both total and marketable yield decreased with increasing time. The yield reduction over time may be directly attributed to the mono-culture of potatoes practiced during the course of this experiment. Key words: Soil temperature, soil moisture, conductivity, bulk density, tillage erosion, potato cropping

2012 ◽  
Vol 29 (7) ◽  
pp. 933-943 ◽  
Author(s):  
Weinan Pan ◽  
R. P. Boyles ◽  
J. G. White ◽  
J. L. Heitman

Abstract Soil moisture has important implications for meteorology, climatology, hydrology, and agriculture. This has led to growing interest in development of in situ soil moisture monitoring networks. Measurement interpretation is severely limited without soil property data. In North Carolina, soil moisture has been monitored since 1999 as a routine parameter in the statewide Environment and Climate Observing Network (ECONet), but with little soils information available for ECONet sites. The objective of this paper is to provide soils data for ECONet development. The authors studied soil physical properties at 27 ECONet sites and generated a database with 13 soil physical parameters, including sand, silt, and clay contents; bulk density; total porosity; saturated hydraulic conductivity; air-dried water content; and water retention at six pressures. Soil properties were highly variable among individual ECONet sites [coefficients of variation (CVs) ranging from 12% to 80%]. This wide range of properties suggests very different behavior among sites with respect to soil moisture. A principal component analysis indicated parameter groupings associated primarily with soil texture, bulk density, and air-dried water content accounted for 80% of the total variance in the dataset. These results suggested that a few specific soil properties could be measured to provide an understanding of differences in sites with respect to major soil properties. The authors also illustrate how the measured soil properties have been used to develop new soil moisture products and data screening for the North Carolina ECONet. The methods, analysis, and results presented here have applications to North Carolina and for other regions with heterogeneous soils where soil moisture monitoring is valuable.


Soil Research ◽  
1998 ◽  
Vol 36 (6) ◽  
pp. 899 ◽  
Author(s):  
D. P. C. Stewart ◽  
K. C. Cameron ◽  
I. S. Cornforth ◽  
J. R. Sedcole

A 2-year field trial determined the influence of applying spent mushroom substrate (SMS) on soil physical properties and the growth of 4 consecutive vegetable crops (sweetcorn, cabbage, potato, cabbage). Treatments comprised 0, 20, 40, and 80 t/ha of moist SMS, both with and without inorganic fertiliser, applied to each crop, giving a range of SMS rates up to 320 t/ha. SMS improved the environment for plant root growth by decreasing soil bulk density (by 0· 05-0·25 g/cm 3 at 100 mm depth), increasing aggregate stability (by 13-16%), reducing clod and surface crust formation (by 16-31 and 18-94%, respectively), increasing the infiltration rate (by 130-207 mm/h), increasing the water content of the soil (by 0-7% w/w), and reducing diurnal temperature changes. Some of these changes were not evident until repeated applications of 80 t/ha SMS had been made. Soil physical properties were related to crop yield, and soil physical properties’ principal components were related to crop principal components using regression analysis (r2 of 0·20-0·60 and 0·16-0·54, respectively). The soil physical properties that had the most influence on plant growth were specific to each crop and included bulk density, water content, surface crust cover, infiltration rate, and aggregate size distribution. Soil physical properties had a large influence on the potato yield irrespective of fertiliser use and on both cabbage crop yields when fertiliser was not used, but not on the sweetcorn yield (the first crop to be grown). The effect of changing soil physical properties on plant growth was most apparent when fertiliser was not used. This was because the improved physical properties increased plant yield (at least in part) because of increased plant nutrient uptake.


1988 ◽  
Vol 24 (3) ◽  
pp. 375-384 ◽  
Author(s):  
N. R. Hulugalle ◽  
M. S. Rodriguez

SUMMARYThe soil physical properties of tied ridges were measured in a trial, established in 1983, comparing three treatments: handhoe cultivation and planting on the flat; planting directly without any cultivation on tied ridges constructed the previous year; and handhoe cultivation and remoulding of tied ridges constructed the previous year. Two maize varieties and two management levels were used. The soil properties monitored were particle size distribution, penetro-meter resistance in the surface 20 mm, bulk density, water infiltration, soil water retention and soil temperature.Soil physical properties were affected mainly by the type of seedbed. Clay content in the surface 0.05 m was greater with tied ridging, with that in the furrows being higher than that in the ridge slopes. Daily maximum soil temperature was greatest in the flat planted plots and in the ridge slopes of the tied ridged plots. Penetrometer resistance at a soil water content of 0.05 kg kg−1 was greater in the tied ridged plots. Cumulative infiltration after 2 h was greatest with flat planting. The bulk density of ridge slopes in tied ridged plots was less than that in the furrows and in the flat planted plots. Soil water retention was greatest in the furrows of the tied ridged plots. Clay content was the major factor determining all the soil physical properties measured.


2014 ◽  
Vol 153 (3) ◽  
pp. 481-496 ◽  
Author(s):  
M. C. RAMOS ◽  
J. A. MARTÍNEZ-CASASNOVAS

SUMMARYThe aim of the present work was to evaluate the possibilities of using sub-basin data for calibration of the Soil and Water Assessment Tool (SWAT) model in a small (46 ha) ungauged basin (i.e. where the water flow is not systematically measured) and its response. This small basin was located in the viticultural Anoia-Penedès region (North-east Spain), which suffers severe soil erosion. The data sources were: daily weather data from an observatory located close to the basin; a detailed soil map of Catalonia; a 5-m resolution digital elevation model (DEM); a crop/land use map derived from orthophotos taken in 2010 and an additional detailed soil survey (40 points) within the basin, which included properties such as texture, soil organic carbon, electrical conductivity, bulk density and water retention capacity at −33 and −1500 kPa. A sensitivity analysis was performed to identify and rank the sensitive parameters that affect the hydrological response and sediment yield to changes of model input parameters. A 1-year calibration and 1-year validation were carried out on the basis of soil moisture measured at 0·20-m intervals from depths of 0·10 to 0·90 m in two selected sub-basins, and data related to estimations of runoff and sediment concentrations in runoff collected in the same sub-basins. The present paper shows a methodological approach for calibrating SWAT in small ungauged basins using soil water content measurements and runoff samples collected within the basin. The SWAT satisfactorily predicted the average soil water content, runoff and soil loss for moderate intensity events recorded during the study periods. However, it was not satisfactory for high-intensity events which would require exploring the possibilities of using sub-daily information as an input model parameter.


2009 ◽  
Vol 44 (2) ◽  
pp. 189-196 ◽  
Author(s):  
Dong Li She ◽  
Ming An Shao ◽  
Luis Carlos Timm ◽  
Klaus Reichardt

The objective of this work was to investigate the relationship between changes in the plant community and changes in soil physical properties and water availability, during a succession from alfalfa (Medicago sativa L.) to natural vegetation on the Loess Plateau, China. Data from a succession sere spanning 32 years were collated, and vegetative indexes were compared to changes related to soil bulk density and soil water storage. The alfalfa yield increased for approximately 7 years, then it declined and the alfalfa was replaced by a natural community dominated by Stipa bungeana that began to thrive about 10 years after alfalfa seeding. Soil bulk density increased over time, but the deterioration of the alfalfa was mainly ascribed to a severe reduction in soil water storage, which was lowest around the time when degradation commenced. The results indicated that water consumption by alfalfa could be reduced by reducing plant density. The analysis of the data also suggested that soil water recharge could be facilitated by rotating the alfalfa with other crops, natural vegetation, or bare soil.


1986 ◽  
Vol 17 (4-5) ◽  
pp. 261-268 ◽  
Author(s):  
S. Hansen ◽  
H. E. Jensen

Spatial variability in evapotranspiration from a crop covered field exposed to homogeneous climatic conditions is partly caused by field variability in soil physical properties and partly by field variability in pertinent crop properties. The present paper presents an analysis of the spatial variability in soil water content and evapotranspiration for two 0.5 ha grass fields of different soil texture, viz. a coarse sand and a sandy loam. Soil physical properties and soil water profiles were determined 1 m apart at 16 points systematically located in each field. The analysis of soil water profiles in relation to soil physical properties indicates an appreciable variability within a range of 1 m. For this reason a relatively simple model was used to simulate the variability pattern of the evapotranspiration, taking into account the variability in plant available water content. The results of the simulations are compared with the evapotranspiration patterns determined on the basis of a short term water balance.


2009 ◽  
Vol 66 (3) ◽  
pp. 338-352 ◽  
Author(s):  
Marcos Bacis Ceddia ◽  
Sidney Rosa Vieira ◽  
André Luis Oliveira Villela ◽  
Lenilson dos Santos Mota ◽  
Lúcia Helena Cunha dos Anjos ◽  
...  

Among the soil formation factors, relief is one of the most used in soil mapping, because of its strong correlation with the spatial variability of soil attributes over a landscape. In this study the relationship between topography and the spatial variability of some soil physical properties was evaluated. The study site, a pasture with 2.84 ha, is located near Seropédica, Rio de Janeiro State, Brazil, where a regular square grid with 20 m spacing was laid out and georreferenced. In each sampling point, altitude was measured and undisturbed soil samples were collected, at 0.0-0.1, 0.1-0.2, and 0.2-0.3 m depths. Organic carbon content, soil texture, bulk density, particle density, and soil water retention at 10 (Field Capacity), 80 (limit of tensiometer reading) and 1500 kPa (Permanent Wilting Point) were determined. Descriptive statistics was used to evaluate central tendency and dispersion parameters of the data. Semivariograms and cross semivariograms were calculated to evaluate the spatial variability of elevation and soil physical attributes, as well as, the relation between elevation and soil physical attributes. Except for silt fraction content (at the three depths), bulk density (at 0.2-0.3 m) and particle density (at 0.0-0.1 m depth), all soil attributes showed a strong spatial dependence. Areas with higher elevation presented higher values of clay content, as well as soil water retention at 10, 80 and 1500 kPa. The correlation between altitude and soil physical attributes decreased as soil depth increased. The cross semivariograms demonstrated the viability in using altitude as an auxiliary variable to improve the interpolation of sand and clay contents at the depth of 0.0-0.3 m, and of water retention at 10, 80 and 1500 kPa at the depth of 0.0-0.2 m.


HortScience ◽  
2019 ◽  
Vol 54 (11) ◽  
pp. 2063-2066
Author(s):  
Philip J. Brown ◽  
Lambert B. McCarty ◽  
Virgil L. Quisenberry ◽  
L. Ray Hubbard ◽  
M. Brad Addy

Drainage is important to golf and athletic facilities trying to avoid lost play time. Native soil containing clay is sometimes incorporated into sand profiles with the intent to increase water and nutrient holding capacities. However, mixes high in silt and/or clay often have drainage problems. Research was conducted on soil physical properties from incremental 10% v/v additions of silt and clay (fines) to a U.S. Golf Association (USGA)-specification sand. Soils were evaluated based on volumetric water retention from 0 to 50 cm matric potential, saturated hydraulic conductivity (Ksat), porosity, and bulk density. The soil water characteristic (SWC) for 100:0 (sand:fines) had lower volumetric water content (θv) throughout the profile than any other mixture. Addition of 10% fines increased θv to more than 0.17 cm3·cm–3 throughout the 0- to 50-cm matric potential range, whereas 20% fines increased θv to more than 0.26 cm3·cm–3. The 70:30 mixture had greater θv throughout the profile than mixtures containing more than 70% sand. Mixtures with less than 70% sand produced similar SWCs. Increasing sand content increased bulk density, which altered saturated volumetric water content. Ksat was reduced from more than 265 cm·h–1 in 100:0 mixtures to 43 cm·h–1 for 90:10 mixtures, and to less than 5 cm·h–1 with ≥20% fines. The addition of ≥20% by volume of fines to a USGA sand increased water content in the soil to the point it was rendered unacceptable for trafficked turf sites. This research illustrates the influence fine particles, even in small amounts, can have on a USGA sand, and why they should not be added without prior evaluation.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 492c-492
Author(s):  
Chris Ely ◽  
Mark A. Hubbard

Azomite is a mined, commercially available, hydrated sodium calcium aluminosiliclate soil amendment reported to act as a source of mineral elements. To determine its effect on plant growth, Dendranthema `Connie' rooted cuttings, Malus seedlings, and Citrus seedlings were grown in containers in one of two growing media: ProMix BX or ProMix BX with Azomite (1:1, v:v). Plant height was monitored weekly and after 6 weeks of growth, fresh and dry plant weights of roots and shoots were determined. There was no difference in any of the parameters measured as a result of the addition of Azomite. Any nutritional influence of the Azomite may only be evident in different conditions, e.g., field soil, or over an extended period of time. The Azomite altered the medium's physical properties and therefore bulk density and water-holding capacity of the Azomite were determined for consideration.


Sign in / Sign up

Export Citation Format

Share Document