scholarly journals Overview of Mollisols in the world: Distribution, land use and management

2012 ◽  
Vol 92 (3) ◽  
pp. 383-402 ◽  
Author(s):  
Xiaobing Liu ◽  
Charles Lee Burras ◽  
Yuri S. Kravchenko ◽  
Artigas Duran ◽  
Ted Huffman ◽  
...  

Liu, X., Burras, C. L., Kravchenko, Y. S., Duran, A., Huffman, T., Morras, H., Studdert, G., Zhang, X., Cruse, R. M. and Yuan, X. 2012. Overview of Mollisols in the world: Distribution, land use and management. Can. J. Soil Sci. 92: 383–402. Mollisols – a.k.a., Black Soils or Prairie Soils – make up about 916 million ha, which is 7% of the world's ice-free land surface. Their distribution strongly correlates with native prairie ecosystems, but is not limited to them. They are most prevalent in the mid-latitudes of North America, Eurasia, and South America. In North America, they cover 200 million ha of the United States, more than 40 million ha of Canada and 50 million ha of Mexico. Across Eurasia they cover around 450 million ha, extending from the western 148 million ha in southern Russia and 34 million ha in Ukraine to the eastern 35 million ha in northeast China. They are common to South America's Argentina and Uruguay, covering about 89 million and 13 million ha, respectively. Mollisols are often recognized as inherently productive and fertile soils. They are extensively and intensively farmed, and increasingly dedicated to cereals production, which needs significant inputs of fertilizers and tillage. Mollisols are also important soils in pasture, range and forage systems. Thus, it is not surprising that these soils are prone to soil erosion, dehumification (loss of stable aggregates and organic matter) and are suffering from anthropogenic soil acidity. Therefore, soil scientists from all of the world's Mollisols regions are concerned about the sustainability of some of current trends in land use and agricultural practices. These same scientists recommend increasing the acreage under minimum or restricted tillage, returning plant residues and adding organic amendments such as animal manure to maintain or increase soil organic matter content, and more systematic use of chemical amendments such as agricultural limestone to replenish soil calcium reserves.

Author(s):  
Trina Stephens

Land‐use change can have a major impact on soil properties, leading to long‐term changes in soilnutrient cycling rates and carbon storage. While a substantial amount of research has been conducted onland‐use change in tropical regions, empirical evidence of long‐term conversion of forested land toagricultural land in North America is lacking. Pervasive deforestation for the sake of agriculturethroughout much of North America is likely to have modified soil properties, with implications for theglobal climate. Here, we examined the response of physical, chemical and biological soil properties toconversion of forest to agricultural land (100 years ago) on Roebuck Farm near Perth, Ontario, Canada.Soil samples were collected at three sites from under forest and agricultural vegetative cover on bothhigh‐ and low‐lying topographic positions (12 locations in total; soil profile sampled to a depth of 40cm).Our results revealed that bulk density, pH, and nitrate concentrations were all higher in soils collectedfrom cultivate sites. In contrast, samples from forested sites exhibited greater water‐holding capacity,porosity, organic matter content, ammonia concentrations and cation exchange capacity. Many of these characteristics are linked to greater organic matter abundance and diversity in soils under forestvegetation as compared with agricultural soils. Microbial activity and Q10 values were also higher in theforest soils. While soil properties in the forest were fairly similar across topographic gradients, low‐lyingpositions under agricultural regions had higher bulk density and organic matter content than upslopepositions, suggesting significant movement of material along topographic gradients. Differences in soilproperties are attributed largely to increased compaction and loss of organic matter inputs in theagricultural system. Our results suggest that the conversion of forested land cover to agriculture landcover reduces soil quality and carbon storage, alters long‐term site productivity, and contributes toincreased atmospheric carbon dioxide concentrations.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Zhengxi Tan ◽  
Shuguang Liu

Terrestrial carbon (C) sequestration through optimizing land use and management is widely considered a realistic option to mitigate the global greenhouse effect. But how the responses of individual ecosystems to changes in land use and management are related to baseline soil organic C (SOC) levels still needs to be evaluated at various scales. In this study, we modeled SOC dynamics within both natural and managed ecosystems in North Dakota of the United States and found that the average SOC stock in the top 20 cm depth of soil lost at a rate of 450 kg C ha−1 yr−1in cropland and 110 kg C ha−1 yr−1in grassland between 1971 and 1998. Since 1998, the study area had become a SOC sink at a rate of 44 kg C ha−1 yr−1. The annual rate of SOC change in all types of lands substantially depends on the magnitude of initial SOC contents, but such dependency varies more with climatic variables within natural ecosystems and with management practices within managed ecosystems. Additionally, soils with high baseline SOC stocks tend to be C sources following any land surface disturbances, whereas soils having low baseline C contents likely become C sinks following conservation management.


1981 ◽  
Vol 61 (2) ◽  
pp. 185-201 ◽  
Author(s):  
J. A. VAN VEEN ◽  
E. A. PAUL

The decomposition rates of 14C-labelled plant residues in different parts of the world were characterized and mathematically simulated. The easily decomposable materials, cellulose and hemicellulose, were described as being decomposed directly by the soil biomass; the lignin fraction of aboveground residues and the resistant portion of the roots entered a decomposable native soil organic matter. Here it could be decomposed by the soil biomass or react with other soil constituents in the formation of more recalcitrant soil organic matter. The transformation rates were considered to be independent of biomass size (first–order). Data from 14C plant residue incorporation studies which yielded net decomposition rates of added materials and from carbon dating of the recalcitrant soil organic matter were transformed to gross decomposition rate constants for three soil depths. The model adequately described soil organic matter transformations under native grassland and the effect of cultivation on organic matter levels. Correction for microbial growth and moisture and temperature variations showed that the rate of wheat straw decomposition, based on a full year in the field in southern Saskatchewan, was 0.05 that under optimal laboratory conditions. The relative decay rates for plant residues during the summer months of the North American Great Plains was 0.1 times that of the laboratory. Comparison with data from other parts of the world showed an annual relative rate of 0.12 for straw decomposition in England, whereas gross decomposition rates in Nigeria were 0.5 those of laboratory rates. Both the decomposable and recalcitrant organic matter were found to be affected by the extent of physical protection within the soil. The extent of protection was simulated and compared to data from experimental studies on the persistence of 14C-labelled amino acids in soil. The extent of protection influenced the steady-state levels of soil carbon upon cultivation more than did the original decomposition rates of the plant residues.


2013 ◽  
Vol 10 (2) ◽  
pp. 1193-1207 ◽  
Author(s):  
S.-W. Duan ◽  
S. S. Kaushal

Abstract. Rising water temperatures due to climate and land use change can accelerate biogeochemical fluxes from sediments to streams. We investigated impacts of increased streamwater temperatures on sediment fluxes of dissolved organic carbon (DOC), nitrate, soluble reactive phosphorus (SRP) and sulfate. Experiments were conducted at 8 long-term monitoring sites across land use (forest, agricultural, suburban, and urban) at the Baltimore Ecosystem Study Long-Term Ecological Research (LTER) site in the Chesapeake Bay watershed. Over 20 yr of routine water temperature data showed substantial variation across seasons and years. Lab incubations of sediment and overlying water were conducted at 4 temperatures (4 °C, 15 °C, 25 °C, and 35 °C) for 48 h. Results indicated: (1) warming significantly increased sediment DOC fluxes to overlying water across land use but decreased DOC quality via increases in the humic-like to protein-like fractions, (2) warming consistently increased SRP fluxes from sediments to overlying water across land use, (3) warming increased sulfate fluxes from sediments to overlying water at rural/suburban sites but decreased sulfate fluxes at some urban sites likely due to sulfate reduction, and (4) nitrate fluxes showed an increasing trend with temperature at some forest and urban sites but with larger variability than SRP. Sediment fluxes of nitrate, SRP and sulfate were strongly related to watershed urbanization and organic matter content. Using relationships of sediment fluxes with temperature, we estimate a 5 °C warming would increase mean sediment fluxes of SRP, DOC and nitrate-N across streams by 0.27–1.37 g m−2 yr−1, 0.03–0.14 kg m−2 yr−1, and 0.001–0.06 kg m−2 yr−1. Understanding warming impacts on coupled biogeochemical cycles in streams (e.g., organic matter mineralization, P sorption, nitrification, denitrification, and sulfate reduction) is critical for forecasting shifts in carbon and nutrient loads in response to interactive impacts of climate and land use change.


2020 ◽  
pp. 6-12
Author(s):  
Tahsina Sharmin Hoque ◽  
Shafia Afrin ◽  
Israt Jahan ◽  
Md. Joinul Abedin Mian ◽  
Mohammad Anwar Hossain

Soil depth can significantly influence the availability of nutrients in soil. An experiment was conducted with seven soil samples from seven land use types to observe the effect of soil depth on soil properties under various land use systems. Soil pH, electrical conductivity (EC), organic matter, available phosphorus (P), available sulphur (S) and different forms of potassium (K) such as water soluble, exchangeable and non-exchangeable were determined from the soil samples collected from four soil depths (viz. 0-10, 10-20, 20-30 and 30-40 cm). Soil pH varied from 6.30-7.39 irrespective of depths and land uses and it increased with increasing soil depth. Electrical conductivity of the soils ranged from 42-310 µS cm-1 and organic matter status of most of the soils was very low to medium in level. Both EC and organic matter content decreased with the increase of soil depth. Available P concentration showed no specific changing trend with soil depth whereas available S concentration under different land use systems decreased with increasing soil depth. The concentrations of water soluble, exchangeable and non-exchangeable K in soils varied from 12.30-39.60, 20.90-53.16 and 163.30-684.30 mg kg-1, respectively and showed no specific changing pattern with soil depth. Water soluble K content was higher in rice growing fertilizer and manure-treated soil but higher exchangeable and non-exchangeable K contents were observed in banana growing soil. In rice growing soils, nutrient concentration is mostly higher in nitrogen (N), P and K + farm yard manure (FYM) - treated plots compared to rice growing control plots.


Proceedings ◽  
2019 ◽  
Vol 30 (1) ◽  
pp. 35 ◽  
Author(s):  
Telak ◽  
Bogunovic ◽  
Rodrigo-Comino

Humans are the driving factor of soil erosion and degradation. Therefore, sustainable land management practices should be developed and applied. The aim of this study was to determine land management impacts on soil properties, soil loss and nutrient loss in 3 different treatments; grass-covered vineyard (GCV), tilled vineyard (TV), and tilled hazelnut orchard (HO). The study area is located in Orahovica, Croatia (45°31′ N, 17°51′ E; elevation 230 m) on ~7° slope. The soil under the study area was classified as a Stagnosol. 8 rainfall simulations (58 mm h−1, during 30 min, over 0.785 m2 plots) were performed at each treatment where the next data were noted: ponding time, runoff time, and collection of overland flow. Soil samples were taken for determination of mean weight diameter (MWD), water stable aggregates (WSA), P2O5 content, and organic matter content. Analyses of sediment revealed concentrations of P2O5 and N. All three treatments had significantly different values of MWD (GCV 3.30 mm; TV 2.94 mm; HO 2.16 mm), while WSA and organic matter significantly differs between GCV and HO. The infiltration rate showed no significant difference between treatments. Sediment yield was significantly the highest at the TV (21.01 g kg−1 runoff), while no significant difference was noted between GCV (2.91) and HO (6.59). Sediments of GCV treatment showed higher concentrations of P2O5 and N, compared to TV and HO. Nutrients loss was highest in the TV (450.3 g P2O5 ha−1; 1891.7 g N ha−1) as a result of highest sediment yield, despite the fact GCV had the highest nutrients concentrations. Results indicate that land management (and/or tillage) affects soil properties and their stability. Even tough HO was tilled and had the lowest values of organic matter, WSA, and MWD, measurements were performed immediately after tillage where the plant residues reduced potential erodibility of the soil. Such results reveal that tillage should be avoided in vineyard and hazelnut production in order to prevent soil and nutrient losses.


2010 ◽  
Vol 3 (3) ◽  
pp. 199-207 ◽  
Author(s):  
Charles T. Bryson ◽  
L. Jason Krutz ◽  
Gary N. Ervin ◽  
Krishna N. Reddy ◽  
John D. Byrd

AbstractCogongrass is a highly invasive, perennial grass that is found on all continents, except Antarctica. It continues to spread at an alarming rate in the southeastern United States. Cogongrass has been reported from a wide array of habitats; however, soils from areas where cogongrass grows have never been characterized. Live cogongrass plants, herbarium specimens, and soil samples were collected from 53 cogongrass populations from across the 10 physiographic regions and land use areas in Mississippi. Cogongrass leaf and inflorescence morphology varied among sites, and plants were found in soils varying widely in texture (ranging from 28 to 86% sand, 3 to 48% silt, and 6 to 43% clay), organic matter content (ranging from 0.9 to 5.0%), pH (ranging from 4.4 to 8.0), and nutrient status: 6 to 190 kg ha−1(15 to 470 lb A−1) of phosphorus (P), 46 to 734 kg ha−1of potassium (K), 150 to 7,620 kg ha−1of calcium (Ca), 26 to 1,090 kg ha−1of magnesium (Mg), 1 to 190 kg ha−1of zinc (Zn), 145 to 800 kg ha−1of estimated sulfur (S) based on organic matter, and 57 to 300 kg ha−1of sodium (Na). These soil parameters were highly variable among cogongrass populations, even within physiographic regions or land use areas, and encompassed much of the soil physiochemical diversity within the state. Soil characteristics were significantly correlated with leaf length (Ca, K, Mg, P, Zn, and percentage of sand and silt), leaf width (Ca, P, Mg, and percentage of sand and silt), the leaf length-to-width ratio (K and P), inflorescence length (Na, P, and pH), inflorescence width (S, organic matter, and pH), and the inflorescence length-to-width ratio (S and organic matter). These data indicate that cogongrass is able to establish, emerge, grow, and reproduce on a wide array of soils in Mississippi. This ability provides cogongrass an advantage over other plant species that are more limited in the soil types that support their growth.


2020 ◽  
Author(s):  
Liqun Tang ◽  
Zhijie Shan ◽  
Yang Yu

<p>Re-vegetation has been widely carried out to prevent land degradation, reduce soil erosion, and improve soil quality. In order to investigate the characteristics of soil nutrients content in different land use types of karst gabin basin, soil organic matter, soil total nitrogen, soil total phosphorus, soil total potassium, soil pH, and soil texture in woodland, agricultural land, orchard, and grassland were surveyed in Mengzi Gabin Basin, Southwest of China. The difference of soil indicators between vegetation types was analyzed, and soil fertility quality of four land use types was comprehensively evaluated by the soil quality index (SQI). The results showed that land use significantly affected soil organic matter content. Soil organic matter content was the highest in grassland, followed by agricultural land and forest land, while orchard was lowest. There was a significant difference in soil total nitrogen content between different land uses. The total nitrogen content in farmland soil was the highest, followed by grassland and woodland, and the lowest in the orchard. Woodand had the highest total potassium content and the lowest total phosphorus content. The grassland soil had the highest total phosphorus content and the lowest total potassium content. pH value in the four land use types was acidic, ranged from 5.82 to 6.67. The soil quality index showed that woodland had the highest soil fertility quality. The results of the study could provide the basis of soil nutrients variation and status in Gabin basin, and also provides support for evaluating the soil improvements during vegetation restoration in fragile Karst ecosystems.</p>


1971 ◽  
Vol 56 ◽  
pp. 22-35

Developments in the world economy have on the whole been much as we predicted in February. It is becoming increasingly clear that renewed expansion is under way in the United States at a pace which, even if it falls short of the Administration's hopes, is more than compensating for the slowing down in industrial countries outside North America. This deceleration has become quite marked in Japan as well as Western Europe, but we expect a faster pace to be resumed before the end of the year. We still put real growth in OECD countries at around 4 per cent in 1971, unless there is a prolonged steel strike in the United States. This compares with about 2½ per cent last year, and we expect the rising trend to continue into 1972.


Author(s):  
M. B. Hossain

The objective of this paper is to formulate suitable policies and management practices that can firmly reduce CO2–C (carbon dioxide –carbon) emissions and sequester it in a sustainable way. Land use and management practices can influence both efflux and influx of carbon between soil and the atmosphere. Organic matter dynamics and nutrient cycling in the soil are closely related to nutrient immobilization and mineralization. Unplanned conversion of lands to agricultural production causes a sharp decrease in carbon stored in soil. In the atmosphere, 4.0 Gt C yr-1 is enriched by different sources. Increasing soil organic carbon (SOC) improves soil health and mitigate climate change. Histosol, clayey and fine particle size have good capacity to sequestrate C in soil. Land use pattern controls organic matter status in soil. Crop/grass, forestry/agroforestry, reduced tillage, quality of organic matter, soil biotic - abiotic are the major factors to sequestrate significant C in soil. The application of fertilizers especially nitrogen usually results in an increase in crop growth as well as a corresponding increase in root development takes place for building up active organicmatter in soil. Biochar amendments can impact soil C storage and net CO2 removals from the atmosphere in three different ways such as longer residence time due to resistant to microbial decay, plant productivity and reduce N2O emission. Wetland soil, effective management practices and control deforestation sequestrate 0.2, 2.0 and 1.6 Gt C yr-1, respectively. Based on these information, it is possible to increase 4‰ carbon a year the quantity of carbon contained in soils at 0-40 cm soil depth to halt carbon dioxide enrichment (4.0 Gt C yr-1) in the atmosphere.


Sign in / Sign up

Export Citation Format

Share Document