Optimal time for remote sensing to relate to crop grain yield on the Canadian prairies

2004 ◽  
Vol 84 (1) ◽  
pp. 97-103 ◽  
Author(s):  
Prakash Basnyat, Brian McConkey ◽  
Guy P. Lafond ◽  
Alan Moulin ◽  
Yann Pelcat

The optimal time to acquire remote sensing imagery to relate to grain yield has not been thoroughly investigated for the Canadian prairies. Remotely sensed data collected when there is the best relationship with yield should provide useful information on the in-field spatial variability of biophysical factors affecting crop productivity relevant to site-specific management. The correlations of normalized difference vegetation index (NDVI) with grain yield for three dates in 2000 at Indian Head and Swift Current, SK, for field pea, canola, and spring wheat were compared. No single date consistently had the highest NDVI-yield correlation for all crops. The period between Jul. 10 to 30 was optimal to obtain NDVI to relate to grain yield for springseeded crops that typically mature in August. Significant NDVI-yield correlations for this period were confirmed in three additional site-years. In a further site-year, however, NDVI-yield correlation was significant for wheat and pea, but not for canola. Occasional problems relating the NDVI to canola yield were attributed to characteristics of the canola canopy, namely, the highly reflective flowers and the dropping of leaves after flowering. In terms of both magnitude and temporal stability of the NDVI-yield correlation, we ranked the crops as: spring wheat, then pea, and then canola. Key words: Remote sensing; grain yield, field pea, canola, wheat, normalized difference vegetation index

2012 ◽  
Vol 152 (1) ◽  
pp. 119-133 ◽  
Author(s):  
S. HU ◽  
X. MO

SUMMARYParameter regionalization is the foundation for the spatial application of an ecosystem model at the canopy level and has been improved greatly by remote sensing (RS). Photosynthetic rate is restricted by the carboxylation rate, which is limited by the activity of the enzyme Rubisco. By including RS normalized difference vegetation index (NDVI) and census data of grain yield at the county level in an ecosystem model (vegetation interface processes (VIP) model), the pattern of photosynthetic parameter Vcmax (maximum catalytic activity of Rubisco) of winter wheat was obtained and then used to simulate the wheat yield and evapotranspiration (ET) in the North China Plain (referred to as the Vcmax method). To evaluate its performance, the simulated yield and ET were compared with those derived by the leaf area index (LAI) method using the retrieved LAI from NDVI to drive the VIP model. The results showed that the Vcmax method performed better than the LAI method in highly productive fields, while the LAI method described the inter-annual variations of yield more favourably in fields with low productivity. Over the study area, average yield (4520 kg/ha) and seasonal ET (360 mm) simulated by the LAI method was slightly lower than those simulated using the Vcmax method (4730 kg/ha for yield and 372 mm for ET). Compared with the census data of yield, the relative root mean square error (RMSE) of grain yield with Vcmax method (0·17) was lower than that of the LAI method (0·20). In conclusion, the physical model with spatial Vcmax pattern from remote sensing is reliable for regional crop productivity prediction.


CERNE ◽  
2017 ◽  
Vol 23 (4) ◽  
pp. 413-422 ◽  
Author(s):  
Eduarda Martiniano de Oliveira Silveira ◽  
José Márcio de Mello ◽  
Fausto Weimar Acerbi Júnior ◽  
Aliny Aparecida dos Reis ◽  
Kieran Daniel Withey ◽  
...  

ABSTRACT Assuming a relationship between landscape heterogeneity and measures of spatial dependence by using remotely sensed data, the aim of this work was to evaluate the potential of semivariogram parameters, derived from satellite images with different spatial resolutions, to characterize landscape spatial heterogeneity of forested and human modified areas. The NDVI (Normalized Difference Vegetation Index) was generated in an area of Brazilian amazon tropical forest (1,000 km²). We selected samples (1 x 1 km) from forested and human modified areas distributed throughout the study area, to generate the semivariogram and extract the sill (σ²-overall spatial variability of the surface property) and range (φ-the length scale of the spatial structures of objects) parameters. The analysis revealed that image spatial resolution influenced the sill and range parameters. The average sill and range values increase from forested to human modified areas and the greatest between-class variation was found for LANDSAT 8 imagery, indicating that this image spatial resolution is the most appropriate for deriving sill and range parameters with the intention of describing landscape spatial heterogeneity. By combining remote sensing and geostatistical techniques, we have shown that the sill and range parameters of semivariograms derived from NDVI images are a simple indicator of landscape heterogeneity and can be used to provide landscape heterogeneity maps to enable researchers to design appropriate sampling regimes. In the future, more applications combining remote sensing and geostatistical features should be further investigated and developed, such as change detection and image classification using object-based image analysis (OBIA) approaches.


Author(s):  
Brayden W. Burns ◽  
V. Steven Green ◽  
Ahmed A. Hashem ◽  
Joseph H. Massey ◽  
Aaron M. Shew ◽  
...  

AbstractDetermining a precise nitrogen fertilizer requirement for maize in a particular field and year has proven to be a challenge due to the complexity of the nitrogen inputs, transformations and outputs in the nitrogen cycle. Remote sensing of maize nitrogen deficiency may be one way to move nitrogen fertilizer applications closer to the specific nitrogen requirement. Six vegetation indices [normalized difference vegetation index (NDVI), green normalized difference vegetation index (GNDVI), red-edge normalized difference vegetation index (RENDVI), triangle greenness index (TGI), normalized area vegetation index (NAVI) and chlorophyll index-green (CIgreen)] were evaluated for their ability to detect nitrogen deficiency and predict grain maize grain yield. Strip trials were established at two locations in Arkansas, USA, with nitrogen rate as the primary treatment. Remote sensing data was collected weekly with an unmanned aerial system (UAS) equipped with a multispectral and thermal sensor. Relationships among index value, nitrogen fertilizer rate and maize growth stage were evaluated. Green NDVI, RENDVI and CIgreen had the strongest relationship with nitrogen fertilizer treatment. Chlorophyll Index-green and GNDVI were the best predictors of maize grain yield early in the growing season when the application of additional nitrogen was still agronomically feasible. However, the logistics of late season nitrogen application must be considered.


Author(s):  
Ankita P. Kamble ◽  
A. A. Atre ◽  
Payal A. Mahadule ◽  
C. B. Pande ◽  
N. S. Kute ◽  
...  

Pests and diseases cause major harm during crop development. Also plant stress affects crop quality and quantity. Recent developments in high resolution remotely sensed data has seen a great potential in mapping cropland areas infected by pests and diseases, as well as potential vulnerable areas over expansive areas. Crop health monitoring in this study was carried out using remote sensing techniques. The present study was carried out in MPKV, Rahuri, Ahmednagar District, Maharashtra. Vegetation indices like Normalized Difference Vegetation Index (NDVI) and Soil Adjusted Vegetation Index (SAVI) were used to classify the crops into healthy and dead or unhealthy one. Sentinel-2 image data from October 2019 to January 2020 processed in Arc GIS 10.1 were used for this study. Vegetation is a key component of the ecosystem and plays an important role in stabilizing the global environment. The result showed that the average vegetation cover was decreased in the month of November and healthy vegetation was found more in month of October as compared to December and January. This shows that NDVI and SAVI indices for Sentinel-2 images can be used for crop health monitoring.


OENO One ◽  
2015 ◽  
Vol 49 (1) ◽  
pp. 1 ◽  
Author(s):  
Matthieu Marciniak ◽  
Ralph Brown ◽  
Andrew Reynolds ◽  
Marilyne Jollineau

<p style="text-align: justify;"><strong>Aim:</strong> The purpose of this study was to determine if multispectral high spatial resolution airborne imagery could be used to segregate zones in vineyards to target fruit of highest quality for premium winemaking. We hypothesized that remotely sensed data would correlate with vine size and leaf water potential (ψ), as well as with yield and berry composition.</p><p style="text-align: justify;"><strong>Methods and results:</strong> Hypotheses were tested in a 10-ha Riesling vineyard [Thirty Bench Winemakers, Beamsville (Ontario)]. The vineyard was delineated using GPS and 519 vines were geo-referenced. Six sub-blocks were delineated for study. Four were identified based on vine canopy size (low, high) with remote sensing in 2005. Airborne images were collected with a four-band digital camera every 3-4 weeks over 3 seasons (2007-2009). Normalized difference vegetation index (NDVI) values (NDVI-red, green) and greenness ratio were calculated from the images. Single-leaf reflectance spectra were collected to compare vegetation indices (VIs) obtained from ground-based and airborne remote-sensing data. Soil moisture, leaf ψ, yield components, vine size, and fruit composition were also measured. Strong positive correlations were observed between VIs and vine size throughout the growing season. Vines with higher VIs during average to dry years had enhanced fruit maturity (higher °Brix and lower titratable acidity). Berry monoterpenes always had the same relationship with remote sensing variables regardless of weather conditions.</p><p style="text-align: justify;"><strong>Conclusions:</strong> Remote sensing images can assist in delineating vineyard zones where fruit will be of different maturity levels, or will have different concentrations of aroma compounds. Those zones could be considered as sub-blocks and processed separately to make wines that reflect those terroir differences. Strongest relationships between remotely sensed VIs and berry composition variables occurred when images were taken around veraison.</p><strong>Significance and impact of the study:</strong> Remote sensing may be effective to quantify spatial variation in grape flavour potential within vineyards, in addition to characteristics such as water status, yield, and vine size. This study was unique by employing remote sensing in cover-cropped vineyards and using protocols for excluding spectral reflectance contributed by inter-row vegetation.


Soil Research ◽  
2006 ◽  
Vol 44 (8) ◽  
pp. 759
Author(s):  
Fares M. Howari ◽  
Ahmed Murad ◽  
Hassan Garamoon

Evapotranspiration (ET) is a major source of water depletion in arid and semi-arid environments; and it is a poorly quantified variable in the hydrological cycle. Remote sensing has the potential application to quantify this variable especially at large scale. The present study reports methodology useful to determine whether derived variables from remotely sensed data, such as vegetation and soil brightness indices, could be used to predict ET. To achieve this goal, various regression analyses were conducted between data derived from satellites, field meteorological stations, and ET values. Selected sub-scenes of Landsat Enhanced Thematic Mapper images free of cloud were used to derive Normalized Difference Vegetation Index (NDVI) and Soil Brightness Index using ER-Mapper and JMP software packages. From the obtained relationship between NDVI and ET, it was observed that ET increases sharply with increase in NDVI. The predicted ET results obtained from the multiple regression functions of field ET, NDVI, solar radiation, wind velocity, and/or temperature are comparable with the ET values obtained by Penman-Monteith method. The results showed that a remotely sensed vegetation index could be used, indirectly, to determine ET values. However, there is still considerable work to be done before simple and full automated extraction of ET from the reported methods can be achieved for large-scale applications.


1991 ◽  
Vol 27 (4) ◽  
pp. 423-429 ◽  
Author(s):  
R. K. Mahey ◽  
Rajwant Singh ◽  
S. S. Sidhu ◽  
R. S. Narang

SUMMARYGround-based radiometric measurements in the red and infrared bands were used to monitor the growth and development of wheat under irrigated and stressed conditions throughout the 1987–88 and 1988–89 growth cycles. Spectral data were correlated with plant height, leaf area index, total fresh and total dry biomass, plant water content and grain yield. The radiance ratio (R) and normalized difference vegetation index (NDVI) were highly and linearly correlated with yield, establishing the potential which remote sensing has for predicting grain yield. The correlation for R and NDVI was at a maximum between 75 and 104 days after sowing, corresponding with maximum green crop canopy cover. The differences in spectral response over time between irrigated and unirrigated crops allowed detection of water stress effects on the crop, indicating that a hand-held radiometer can be used to collect spectral data which can supply information on wheat growth and development.Efectos de lafalta de agua en el trigo


2019 ◽  
Vol 21 (2) ◽  
pp. 1310-1320
Author(s):  
Cícera Celiane Januário da Silva ◽  
Vinicius Ferreira Luna ◽  
Joyce Ferreira Gomes ◽  
Juliana Maria Oliveira Silva

O objetivo do presente trabalho é fazer uma comparação entre a temperatura de superfície e o Índice de Vegetação por Diferença Normalizada (NDVI) na microbacia do rio da Batateiras/Crato-CE em dois períodos do ano de 2017, um chuvoso (abril) e um seco (setembro) como também analisar o mapa de diferença de temperatura nesses dois referidos períodos. Foram utilizadas imagens de satélite LANDSAT 8 (banda 10) para mensuração de temperatura e a banda 4 e 5 para geração do NDVI. As análises demonstram que no mês de abril a temperatura da superfície variou aproximadamente entre 23.2ºC e 31.06ºC, enquanto no mês correspondente a setembro, os valores variaram de 25°C e 40.5°C, sendo que as maiores temperaturas foram encontradas em locais com baixa densidade de vegetação, de acordo com a carta de NDVI desses dois meses. A maior diferença de temperatura desses dois meses foi de 14.2°C indicando que ocorre um aumento da temperatura proporcionado pelo período que corresponde a um dos mais secos da região, diferentemente de abril que está no período de chuvas e tem uma maior umidade, presença de vegetação e corpos d’água que amenizam a temperatura.Palavras-chave: Sensoriamento Remoto; Vegetação; Microbacia.                                                                                  ABSTRACTThe objective of the present work is to compare the surface temperature and the Normalized Difference Vegetation Index (NDVI) in the Batateiras / Crato-CE river basin in two periods of 2017, one rainy (April) and one (September) and to analyze the temperature difference map in these two periods. LANDSAT 8 (band 10) satellite images were used for temperature measurement and band 4 and 5 for NDVI generation. The analyzes show that in April the surface temperature varied approximately between 23.2ºC and 31.06ºC, while in the month corresponding to September, the values ranged from 25ºC and 40.5ºC, and the highest temperatures were found in locations with low density of vegetation, according to the NDVI letter of these two months. The highest difference in temperature for these two months was 14.2 ° C, indicating that there is an increase in temperature provided by the period that corresponds to one of the driest in the region, unlike April that is in the rainy season and has a higher humidity, presence of vegetation and water bodies that soften the temperature.Key-words: Remote sensing; Vegetation; Microbasin.RESUMENEl objetivo del presente trabajo es hacer una comparación entre la temperatura de la superficie y el Índice de Vegetación de Diferencia Normalizada (NDVI) en la cuenca Batateiras / Crato-CE en dos períodos de 2017, uno lluvioso (abril) y uno (Septiembre), así como analizar el mapa de diferencia de temperatura en estos dos períodos. Las imágenes de satélite LANDSAT 8 (banda 10) se utilizaron para la medición de temperatura y las bandas 4 y 5 para la generación de NDVI. Los análisis muestran que en abril la temperatura de la superficie varió aproximadamente entre 23.2ºC y 31.06ºC, mientras que en el mes correspondiente a septiembre, los valores oscilaron entre 25 ° C y 40.5 ° C, y las temperaturas más altas se encontraron en lugares con baja densidad de vegetación, según el gráfico NDVI de estos dos meses. La mayor diferencia de temperatura de estos dos meses fue de 14.2 ° C, lo que indica que hay un aumento en la temperatura proporcionada por el período que corresponde a uno de los más secos de la región, a diferencia de abril que está en la temporada de lluvias y tiene una mayor humedad, presencia de vegetación y cuerpos de agua que suavizan la temperatura.Palabras clave: Detección remota; vegetación; Cuenca.


2021 ◽  
Vol 13 (6) ◽  
pp. 1131
Author(s):  
Tao Yu ◽  
Pengju Liu ◽  
Qiang Zhang ◽  
Yi Ren ◽  
Jingning Yao

Detecting forest degradation from satellite observation data is of great significance in revealing the process of decreasing forest quality and giving a better understanding of regional or global carbon emissions and their feedbacks with climate changes. In this paper, a quick and applicable approach was developed for monitoring forest degradation in the Three-North Forest Shelterbelt in China from multi-scale remote sensing data. Firstly, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Ratio Vegetation Index (RVI), Leaf Area Index (LAI), Fraction of Photosynthetically Active Radiation (FPAR) and Net Primary Production (NPP) from remote sensing data were selected as the indicators to describe forest degradation. Then multi-scale forest degradation maps were obtained by adopting a new classification method using time series MODerate Resolution Imaging Spectroradiometer (MODIS) and Landsat Enhanced Thematic Mapper Plus (ETM+) images, and were validated with ground survey data. At last, the criteria and indicators for monitoring forest degradation from remote sensing data were discussed, and the uncertainly of the method was analyzed. Results of this paper indicated that multi-scale remote sensing data have great potential in detecting regional forest degradation.


2021 ◽  
Vol 13 (11) ◽  
pp. 2088
Author(s):  
Carlos Quemada ◽  
José M. Pérez-Escudero ◽  
Ramón Gonzalo ◽  
Iñigo Ederra ◽  
Luis G. Santesteban ◽  
...  

This paper reviews the different remote sensing techniques found in the literature to monitor plant water status, allowing farmers to control the irrigation management and to avoid unnecessary periods of water shortage and a needless waste of valuable water. The scope of this paper covers a broad range of 77 references published between the years 1981 and 2021 and collected from different search web sites, especially Scopus. Among them, 74 references are research papers and the remaining three are review papers. The different collected approaches have been categorized according to the part of the plant subjected to measurement, that is, soil (12.2%), canopy (33.8%), leaves (35.1%) or trunk (18.9%). In addition to a brief summary of each study, the main monitoring technologies have been analyzed in this review. Concerning the presentation of the data, different results have been obtained. According to the year of publication, the number of published papers has increased exponentially over time, mainly due to the technological development over the last decades. The most common sensor is the radiometer, which is employed in 15 papers (20.3%), followed by continuous-wave (CW) spectroscopy (12.2%), camera (10.8%) and THz time-domain spectroscopy (TDS) (10.8%). Excluding two studies, the minimum coefficient of determination (R2) obtained in the references of this review is 0.64. This indicates the high degree of correlation between the estimated and measured data for the different technologies and monitoring methods. The five most frequent water indicators of this study are: normalized difference vegetation index (NDVI) (12.2%), backscattering coefficients (10.8%), spectral reflectance (8.1%), reflection coefficient (8.1%) and dielectric constant (8.1%).


Sign in / Sign up

Export Citation Format

Share Document