Winter damage to perennial forage crops in eastern Canada: Causes, mitigation, and prediction

2006 ◽  
Vol 86 (1) ◽  
pp. 33-47 ◽  
Author(s):  
G. Bélanger ◽  
Y. Castonguay ◽  
A. Bertrand ◽  
C. Dhont ◽  
P. Rochette ◽  
...  

Harsh winter climate results in frequent losses of stands and yield reduction in many forage-growing areas of Canada and other parts of the world. Climatic conditions and crop management both affect the winter survival of perennial forage crops. In this review, we present the main causes of winter damage in eastern Canada and we discuss crop management practices that help mitigate the risks of losses. Predictive tools available to assess the risks of winter damage both spatially and temporally are also presented. Our understanding of the causes of winter damage and of the plant adaptation mechanisms to winter stresses, particularly the role of N and C organic reserves, has improved. Forage species commonly grown in eastern Canada differ in their tolerance to subfreezing temperatures and to anoxia caused by the presence of ice on fields. Some improvement in winter hardiness of forage legume species has been achieved through breeding in eastern Canada but new technologies based on laboratory freezing tests and the identification of molecular markers may facilitate the future development of winter-hardy cultivars. Crop management practices required for good winter survival are now better defined, particularly those involving cutting management and the interval between harvests. Simulation models and climatic indices derived from our current knowledge of the causes of winter damage provide general indications on the risk of winter damage but their degree of precision and accuracy is still not satisfactory. Further improvements in winter survival require a more thorough understanding of the different causes of winter damage and, primarily, of their complex interactions with genetic, climatic, and management factors. Key words: Alfalfa, organic reserves, culitvars, species, management, climate

2006 ◽  
Vol 144 (2) ◽  
pp. 95-110 ◽  
Author(s):  
M. P. REYNOLDS ◽  
N. E. BORLAUG

Despite the successes of the Green Revolution, about a billion people are still undernourished and food security in the developing world faces new challenges in terms of population growth, reduced water resources, climate change and decreased public sector investment. It is also becoming widely recognized that poverty is a cause of environmental degradation, conflict and civil unrest. Internationally coordinated agricultural research can play a significant role in improving food security by deploying promising new technologies as well as adapting those with well-established impact.In addition to the genetic challenges of crop improvement, agriculturalists must also embrace the problems associated with a highly heterogeneous and unpredictable environment. Not only are new genetic tools becoming more accessible, but a new generation of quantitative tools are available to enable better definition of agro-ecosystems, of cultivar by environment interactions, and of socio-economic issues, while satellite imagery can help predict crop yields on large scales. Identifying areas of low genetic diversity – for example as found in large tracts of South Asia – is an important aspect of reducing vulnerability to disease epidemics. Global strategies for incorporating durable disease resistance genes into a wider genetic background, as well as participatory approaches that deliver a fuller range of options to farmers, are being implemented to increase cultivar diversity.The unpredictable effects of environment on productivity can be buffered somewhat by crop management practices that maintain healthy soils, while reversing the consequences of rapid agricultural intensification on soil degradation. Conservation agriculture is an alternative strategy that is especially pertinent for resource-poor farmers.The potential synergy between genetic improvement and innovative crop management practices has been referred to as the Doubly Green Revolution. The unique benefits and efficiency of the international collaborative platform are indisputable when considering the duplications that otherwise would have been required to achieve the same impacts through unilateral or even bilateral programmes. Furthermore, while the West takes for granted public support for crucial economic and social issues, this is not the case in a number of less-developed countries where the activities of International Agricultural Research Centres (IARCs) and other development assistance organizations can provide continuity in agricultural research and infrastructure.


2002 ◽  
Vol 94 (5) ◽  
pp. 1120 ◽  
Author(s):  
Gilles Bélanger ◽  
Philippe Rochette ◽  
Yves Castonguay ◽  
Andrew Bootsma ◽  
Danielle Mongrain ◽  
...  

2002 ◽  
Vol 82 (4) ◽  
pp. 731-737 ◽  
Author(s):  
M. A. Bolinder ◽  
D. A. Angers ◽  
G. Bélanger ◽  
R. Michaud ◽  
M. R. Laverdière

Shoot to root ratios (S:R) at peak standing crop are commonly used to estimate the annual crop residue C inputs to the soil from the root biomass left in the soil at harvest. However, root biomass has often been neglected in field studies and estimates of S:R for many commonly grown forage species are not available. Our objective was to determine root biomass and S:R of seven perennial grass species and two perennial legume species under eastern Canadian soil and climatic conditions. Root biomass in three soil layers (0–15, 15–30 and 30–45 cm) was measured shortly after the second harvest in the first (1995) and second (1996) year of production. Two harvests of aboveground DM were taken each year. The total root biomass (0–45 cm) in the second year of production (average of 1437 g m-2) was twice that measured in the first year of production (average of 683 g m-2). This temporal variation was mainly explained by the increase of root biomass in the 0- to 15-cm layer. The proportion of total root biomass (0–45 cm) in the 0- to 15-cm layer increased from 54 to 71% while that in the 15- to 30-cm layer decreased from 37 to 21%; the proportion of roots in the 30- to 45-cm layer remained constant at about 10% in both years. The S:R of alfalfa for the 0- to 15-cm depth was significantly higher than that for most of the grasses. No significant difference in S:R was observed among grass species. Recognizing that S:R may vary with locations and climatic conditions, our results suggest that average S:R of about 1.30 (values ranged from 1.01 to 1.72) in the first production year and 0.60 (values ranged from 0.43 to 0.87) in the second production year could be used as a first approximation to estimate the amount of root biomass left in the soil to a depth of 45 cm from forage crops in eastern Canada. The S:R of forage crops, particularly grasses, were lower than those of annual crops such as small-grain cereals and corn. Key words: Forage, annual C inputs, soil organic matter, root biomass, shoot to root ratios


2021 ◽  
Vol 14 (4) ◽  
pp. 2403-2426
Author(s):  
Antonio Gebson Pinheiro ◽  
Luciana Sandra Bastos de Souza ◽  
Alexandre Maniçoba da Rosa Ferraz Jardim ◽  
George do Nascimento Araújo Júnior ◽  
Cleber Pereira Alves ◽  
...  

Livestock farming is a fundamental economic activity for the semi-arid region, but it is directly influenced by factors such as soil characteristics, forage quality and rainfall seasonality. The irregularity of these factors reduces productivity levels, making them dependent on climatic conditions. In this sense, the knowledge of the main causes that reduce productivity and the adoption of resilient agricultural practices are essential in reducing the seasonal effects of the climate, increasing the supply of forage in the period of water scarcity. The use of adapted forage crops and with productive potential constitutes an efficient agricultural resilience practice, among which stands out the forage cactus, sorghum, millet, pigeon pea and sunflower. These are constituted with a high capacity for water conversion into dry matter, nutritional complementation and increased production. In addition, the implementation of practices (e.g. intercropping, irrigation, densification, mulch, etc.) contribute to the optimization of natural resources and provide better results in the continuous subsidy of forage production. With this, the present study aimed to present the environmental characteristics of the Brazilian semiarid region, to expose concepts about the levels of productivity and the main factors of the production gaps, in addition to disseminating mitigation strategies of forage production. After compiling this information, it highlights the importance of adapted forage crops and the adoption of agricultural management practices as strategies to mitigate the seasonal effects of the climate, contributing to the continuous subsidy of forage production. At the same time, the Yield Gap analysis allows for a broader knowledge of the limiting factors of production, directing agricultural planning more efficiently.


2021 ◽  
Vol 12 ◽  
Author(s):  
Éric Gomès ◽  
Pascale Maillot ◽  
Éric Duchêne

Adaptation of viticulture to climate change includes exploration of new geographical areas, new training systems, new management practices, or new varieties, both for rootstocks and scions. Molecular tools can be defined as molecular approaches used to study DNAs, RNAs, and proteins in all living organisms. We present here the current knowledge about molecular tools and their potential usefulness in three aspects of grapevine adaptation to the ongoing climate change. (i) Molecular tools for understanding grapevine response to environmental stresses. A fine description of the regulation of gene expression is a powerful tool to understand the physiological mechanisms set up by the grapevine to respond to abiotic stress such as high temperatures or drought. The current knowledge on gene expression is continuously evolving with increasing evidence of the role of alternative splicing, small RNAs, long non-coding RNAs, DNA methylation, or chromatin activity. (ii) Genetics and genomics of grapevine stress tolerance. The description of the grapevine genome is more and more precise. The genetic variations among genotypes are now revealed with new technologies with the sequencing of very long DNA molecules. High throughput technologies for DNA sequencing also allow now the genetic characterization at the same time of hundreds of genotypes for thousands of points in the genome, which provides unprecedented datasets for genotype-phenotype associations studies. We review the current knowledge on the genetic determinism of traits for the adaptation to climate change. We focus on quantitative trait loci and molecular markers available for developmental stages, tolerance to water stress/water use efficiency, sugar content, acidity, and secondary metabolism of the berries. (iii) Controlling the genome and its expression to allow breeding of better-adapted genotypes. High-density DNA genotyping can be used to select genotypes with specific interesting alleles but genomic selection is also a powerful method able to take into account the genetic information along the whole genome to predict a phenotype. Modern technologies are also able to generate mutations that are possibly interesting for generating new phenotypes but the most promising one is the direct editing of the genome at a precise location.


Author(s):  
Jaroslav Jánský ◽  
Iva Živělová ◽  
Jan Křen ◽  
Soňa Valtýniová

The contribution is aimed at the assessment of recommended crop management practices of chosen cereals for organic farming. To increase competitiveness, these practices are modified depending on soil and climatic conditions, and on a way of production use. Furthermore, impacts of the recommended crop management practices on economics of growing chosen cereals are evaluated and compared with economic results obtained under conventional farming. It is assumed that achieved results will contribute to the increase in proportion of arable crops in the Czech Republic where organic production offer does not meet current demands.When evaluating results of growing individual cereal species in a selective set of organic farms, triticale, spelt and spring barley (in this ranking) can be considered as profitable crops. Moreover, triticale and spelt have even higher gross margin under organic farming than under conventional farming (by 62 % in triticale). Oat brings losses, however, it is important for livestock production. Winter wheat seems to be also unprofitable since less grain is produced at lower imputs per hectare and only part of it is produced in quality “bio”, i.e. marketed for higher prices. Rye also brings losses under organic farming, particularly due to lower yields, similarly to the other mentioned cereals. Special cereal species that are still neglected in organic farming systems are of potential use. Durum wheat has vitreous kernels with a high content of quality gluten which is used for pasta production. It can be grown in the maize production area on fertile soils only.


1976 ◽  
Vol 5 (3) ◽  
pp. 255-259 ◽  
Author(s):  
John Muir ◽  
J. S. Boyce ◽  
E. C. Seim ◽  
P. N. Mosher ◽  
E. J. Deibert ◽  
...  

Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 469 ◽  
Author(s):  
Vila-Aiub

Herbicide resistance is the ultimate evidence of the extraordinary capacity of weeds to evolve under stressful conditions. Despite the extraordinary plant fitness advantage endowed by herbicide resistance mutations in agroecosystems under herbicide selection, resistance mutations are predicted to exhibit an adaptation cost (i.e., fitness cost), relative to the susceptible wild-type, in herbicide untreated conditions. Fitness costs associated with herbicide resistance mutations are not universal and their expression depends on the particular mutation, genetic background, dominance of the fitness cost, and environmental conditions. The detrimental effects of herbicide resistance mutations on plant fitness may arise as a direct impact on fitness-related traits and/or coevolution with changes in other life history traits that ultimately may lead to fitness costs under particular ecological conditions. This brings the idea that a “lower adaptive value” of herbicide resistance mutations represents an opportunity for the design of resistance management practices that could minimize the evolution of herbicide resistance. It is evident that the challenge for weed management practices aiming to control, minimize, or even reverse the frequency of resistance mutations in the agricultural landscape is to “create” those agroecological conditions that could expose, exploit, and exacerbate those life history and/or fitness traits affecting the evolution of herbicide resistance mutations. Ideally, resistance management should implement a wide range of cultural practices leading to environmentally mediated fitness costs associated with herbicide resistance mutations.


2020 ◽  
Vol 20 (6) ◽  
Author(s):  
Abeysinghe Mudiyanselage Prabodha Sammani ◽  
Dissanayaka Mudiyanselage Saman Kumara Dissanayaka ◽  
Leanage Kanaka Wolly Wijayaratne ◽  
William Robert Morrison

Abstract The almond moth Cadra cautella (Walker), a key pest of storage facilities, is difficult to manage using synthetic chemicals. Pheromone-based management methods remain a high priority due to advantages over conventional management practices, which typically use insecticides. Cadra cautella females release a blend of pheromone including (Z, E)-9,12-tetradecadienyl acetate (ZETA) and (Z)-9-tetradecadien-1-yl acetate (ZTA). The effect of these components on mating of C. cautella and how response varies with the population density and sex ratio remain unknown. In this study, the mating status of C. cautella was studied inside mating cages under different ratios of ZETA and ZTA diluted in hexane and at different population sizes either with equal or unequal sex ratio. The lowest percentage of mated females (highest mating disruption [MD] effects), corresponding to roughly 12.5%, was produced by a 5:1 and 3.3:1 ratio of ZETA:ZTA. Populations with equal sex ratio showed the lowest percentage of mated females, at 20% and 12.5% under lower and higher density, respectively. The next lowest percentage of mated females was produced when the sex ratio was set to 1: 2 and 2:1 male:female, with just 25% and 22.5% of moths mated, respectively. This study shows that mating status of C. cautella is influenced by ZETA:ZTA ratio, sex ratio, and population size. This current knowledge would have useful implications for mating disruption programs.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 209
Author(s):  
Luiza Tymińska-Czabańska ◽  
Jarosław Socha ◽  
Marek Maj ◽  
Dominika Cywicka ◽  
Xo Viet Hoang Duong

Site productivity provides critical information for forest management practices and is a fundamental measure in forestry. It is determined using site index (SI) models, which are developed using two primary groups of methods, namely, phytocentric (plant-based) or geocentric (earth-based). Geocentric methods allow for direct site growth modelling, in which the SI is predicted using multiple environmental indicators. However, changes in non-static site factors—particularly nitrogen deposition and rising CO2 concentration—lead to an increase in site productivity, which may be visible as an age trend in the SI. In this study, we developed a geocentric SI model for oak. For the development of the SI model, we used data from 150 sample plots, representing a wide range of local topographic and site conditions. A generalized additive model was used to model site productivity. We found that the oak SI depended predominantly on physicochemical soil properties—mainly nitrogen, carbon, sand, and clay content. Additionally, the oak SI value was found to be slightly shaped by the topography, especially by altitude above sea level, and topographic position. We also detected a significant relationship between the SI and the age of oak stands, indicating the long-term increasing site productivity for oak, most likely caused by nitrogen deposition and changes in climatic conditions. The developed geocentric site productivity model for oak explained 77.2% of the SI variation.


Sign in / Sign up

Export Citation Format

Share Document