Combined primary/secondary papermill sludge as a nitrogen source in a cabbage-sweet corn cropping sequence

2001 ◽  
Vol 81 (1) ◽  
pp. 1-10 ◽  
Author(s):  
R R Simard

Combined primary/secondary papermill sludge (PS) is rich in N and may potentially be used as a N source for horticultural crops. A 3-yr experiment was conducted to determine the effects of PS application on crop yields, N uptake and N recovery. The PS was applied in 1996 on a Bedford silty clay (Humic Gleysol) cropped to winter cabbage (Brassica oleracea var capitata L. 'Bartolo') at 0, 8, 16, 32, and 64 Mg ha-1 (dry basis). In 1997, PS was applied at 44% of the 1996 rates to the same plots and cropped to sweet corn (Zea mays L. 'Delectable'). No PS was applied in 1998 to evaluate residual effects on corn. Treatments with ammonium nitrate (AN) at 50, 100 and 200% of N fertiliser recommendations were included each year as a reference for crop response. The PS had a C:N ratio of 42:1 in 1996 and of 28:1 in 1997. About 29% of the total N in PS was inorganic. Cabbage and corn marketable yields and N uptake increased with increasing amounts of PS applied. AN supplemented with PS further increased cabbage yields. Based on the N fertiliser replacement value, the N efficiency coefficient of PS was 44% in the first year. A N residual effect of the PS applied in 1996 was observed on the corn yield in 1997. The two PS applications also had a very significant residual effect on corn yield in the third year, although supplemental AN at 150 kg N ha-1 tended to further increase yields. The apparent total N recovery by the three crops was similar for PS and AN (i.e., 34 vs. 38%). The apparent recovery of organic N from PS decreased with increasing rates of application from 46 to 25%. These results suggest that PS is an effective source of N for crops and that significant residual N effects should be considered when estimating the N needs of subsequent crops. Key words: Cabbage, nitrogen, mineralization coefficient, paper mill residues, sweet corn

2019 ◽  
Vol 99 (2) ◽  
pp. 173-181
Author(s):  
Mehdi Sharifi ◽  
Scott Baker ◽  
Leila Hojabri ◽  
Monireh Hajiaghaei-Kamrani

The co-product of anaerobic digestion, digestate, is nitrogen (N) rich; however, the forms and accessibility of this N by the crops have not been fully explored. This study aimed to determine the mineralization parameters of digestate N and to assess its availability for annual ryegrass (Lolium multiflorum Lam.). Four digestate rates of 0 (control), 38, 75, and 150 mg N kg−1 soil (equal to 0, 90, 180, and 360 kg total N ha−1) were applied to a silty clay loam soil in a completely randomized block design with four replications in a greenhouse study. A 100 d aerobic incubation experiment was also conducted with 0 and 150 mg digestate N kg−1 rates at 25 °C. Digestate feedstock included cattle manure (28%), hay (15%), and silage corn (Zea mays L.; 57%). Total plant biomass and N uptake increased linearly with digestate application rate with average apparent N recovery of 37%. Potentially mineralizable N (N0) and mineralizable N rate constant (k) were not significantly different in digestate and control treatments; however, a flush of digestate organic N (30 mg N kg−1) released right after mixing the digestate with soil. Evidences of N immobilization with digestate application were observed in greenhouse study. Majority of plant-available digestate N was in form of NH4+-N; therefore, NH4+-N can be used for estimation of available digestate N for crops. Results need to be validated for specific feedstock and soil properties under field conditions. Further research is needed to assess how long-term build-up of digestate organic N may impact the N availability for crops.


2000 ◽  
Vol 80 (1) ◽  
pp. 63-69 ◽  
Author(s):  
Selamyihun Kidanu ◽  
D. G. Tanner ◽  
Tekalign Mamo

A trial was conducted on an Ethiopian Vertisol from 1990 to 1995 to determine the residual effects of fertiliser N applied to tef [Eragrostistef (Zucc.) Trotter] on the grain and straw yield, N content, and total N uptake of succeeding crops of durum wheat (Triticum turgidum var. durum) and tef. The mean agronomic efficiency of 60 kg fertiliser N ha−1 was 13.1 kg grain kg−1 fertiliser N applied in the current year and 5.4 kg grain kg−1 fertiliser N applied in the previous year. Thus, the residual fertiliser N benefit was equivalent to 41.2% of the response to current season N application for the two cereal crops. The mean rates of apparent recovery of fertiliser N were 65.8% for current season N application and 31.0% for previous season N application. Soil organic matter and nitrate levels increased linearly in response to both previous and current season N application rates. The current study demonstrates that the residual effect of fertiliser N enhanced the yields and N contents of the grain and straw of both wheat and tef, resulting in a significant increase in total N uptake. Any analysis of the profitability of fertiliser N response should reflect the multi-year benefit period. Key words: N recovery, N residue, N uptake, tef, wheat


2003 ◽  
Vol 83 (5) ◽  
pp. 497-505 ◽  
Author(s):  
A. N’Dayegamiye ◽  
S. Huard ◽  
Y. Thibault

Mixed paper mill sludges are an important source of N for crop production. An estimate of direct and residual N recovery is necessary for their efficient management. A 3-yr field study (1997-1999) was conducted in central Quebec, Canada, to evaluate mixed paper mill sludges (PMS) effects on corn (Zea mays L.) yields and N nutrition, N recovery and N efficiency. The effects of PMS on soil NO3-N and total N levels were also determined. The study was situated on a silt loam Baudette soil (Humic Gleysol). The treatments included 3 PMS rates (30, 60 and 90 t ha-1 on wet basis) applied alone or in combination with N fertilizer (90 and 135 kg N ha-1, respectively, for 60 and 30 t ha-1). Treatments also included a control without PMS or N fertilizer, and a complete mineral N fertilizer (180 kg N ha-1) as recommended for corn. The previous plots were split beginning with the second year of the experiment, for annual and biennal PMS applications. Similar treatments as above were made on an adjacent site to evaluate N recovery under climatic conditions in 1999. In all years, PMS applied alone significantly increased corn yields by 1.5–5 t ha-1, compared to the unfertilized control. However, corn yields and N uptake were highest from the application of PMS in combination with N fertilizer. Biennial PMS applications at 60 to 90 ha-1 significantly increased corn yields and N uptake, which suggest high PMS residual effect; however, these increases were lower than those obtained with annual PMS applications. The N efficiency varied in 1997 from 13.0 to 15.4 kg grain kg N-1 for mineral N fertilizer and ranged from 3 to 13.7 kg grain kg N-1 for PMS, decreasing proportionally to increasing PMS rates. Apparent N recovery ranged from 1 3 to 19% in 1997 and from 10 to 14% in the residual year (1998), compared to 30 and 49%, respectively, for mineral N fertilizer. Depending on the PMS rate, N recovery varied from 13 to 21% in 1999. The results indicate high N supplying capacity and high r esidual N effects of PMS, which probably influenced corn yields and N nutrition. Annual PMS applications alone or combined with mineral N fertilizer had no significant effect on soil NO3-N and total N levels. This study demonstrates that application of low PMS rate (30 t ha-1) combined with mineral N fertilizer could achieve high agronomic, economic and environmental benefits on farms. Key words: Mixed paper mill sludges, corn yields, N uptake, N efficiency, residual effects, soil N


1985 ◽  
Vol 65 (1) ◽  
pp. 63-70 ◽  
Author(s):  
H. ANTOUN ◽  
S. A. VISSER ◽  
M. P. CESCAS ◽  
P. JOYAL

The objective of this work was to determine the response of corn to liquid hog manure surface applied at rates of 28, 56 and 112 tonnes/ha. In greenhouse trials, yield of corn grown for 4 wk on St. Jude loamy sand was not affected by manure application. On Kamouraska silty clay, only manure applied at a rate of 112 tonnes/ha increased corn yield, as compared to the non-treated control. Corn response on Janvier sandy clay loam improved with increasing rate of manure application up to 56 tonnes/ha. Application of 112 tonnes/ha (325 kg N/ha) manure increased N content of corn and had a significant residual effect as noted by the high yield obtained at the second harvest. In a 2-yr field experiment on Kamouraska soil, corn yield was significantly higher at 112 tonnes/ha (avg 432 kg N/ha) than chemical fertilizer application at 150 kg N/ha, and manure-treated soil contained more P, Ca and Mg after the first year. Nutrient uptake by corn increased with amount of manure applied. However, corn whole plant composition was not affected by rate of manure application. N recovery was higher from manure at 28 or 56 tonnes/ha than from a chemical fertilizer (150 kg N/ha, 65.5 kg P/ha and 125 kg K/ha). At the rates applied, the liquid hog manure did not result in reduced corn yield.Key words: Corn yield, hog manure, nutrient uptake, silage corn


Biochar ◽  
2021 ◽  
Author(s):  
Jing Peng ◽  
Xiaori Han ◽  
Na Li ◽  
Kun Chen ◽  
Jinfeng Yang ◽  
...  

AbstractCombined application of biochar with fertilizers has been used to increase soil fertility and crop yield. However, the coupling mechanisms through which biochar improves crop yield at field scale and the time span over which biochar affects carbon and nitrogen transformation and crop yield are still little known. In this study, a long-term field trial (2013–2019) was performed in brown soil planting maize. Six treatments were designed: CK—control; NPK—application of chemical fertilizers; C1PK—low biochar without nitrogen fertilizer; C1NPK, C2NPK and C3NPK—biochar at 1.5, 3 and 6 t ha−1, respectively, combined with chemical fertilizers. Results showed that the δ15N value in the topsoil of 0–20 cm layer in the C3NPK treatment reached a peak of 291 ‰ at the third year (2018), and demonstrated a peak of 402 ‰ in the NPK treatment in the initial isotope trial in 2016. Synchronously, SOC was not affected until the third to fourth year after biochar addition, and resulted in a significant increase in total N of 2.4 kg N ha−1 in 2019 in C3NPK treatment. During the entire experiment, the 15N recovery rates of 74–80% were observed highest in the C2NPK and C3NPK treatments, resulting in an annual increase in yields significantly. The lowest subsoil δ15N values ranged from 66‰ to 107‰, and the 15N residual rate would take 70 years for a complete decay to 0.001% in the C3NPK. Our findings suggest that biochar compound fertilizers can increase C stability and N retention in soil and improve N uptake by maize, while the loss of N was minimized. Biochars, therefore, may have an important potential for improving the agroecosystem and ecological balance. Graphic abstract


Author(s):  
Syed Azam Shah ◽  
Wisal Mohammad ◽  
Haroon Haroon ◽  
Adnan Anwar Khan

The study was designed to asses the residual effect of organic N (Poultry Manure) and mineral N on maize crop in field experiments carried out on silty clay loam soil at NIFA, Tarnab, Peshawar, Khyber Pakhtunkhwa (KP) Pakistan during 2014-15. Combined dose of N from both sources were 120 kg ha-1 applied to wheat crop alone and in different combination making six treatments. Maize variety (Azam) was sown in Randomized complete block (RCB) design with four replications. Agronomic data, grains ear-1, 1000 grain weight, biomass grain yield data, N-uptake in maize grain and straw were recorded. Results showed that maximum grain ear−1, 1000 grain weight, biomass and grain yield was obtained from treatment where 25% N applied from poultry manure + 75% from mineral N source applied to previous wheat crop. Agronomic efficiency and nitrogen use efficiency were also found maximum in treatment where 75% poultry manure + 25% mineral N was applied. It was concluded from the study that residual effect of organic manure with mineral N in different ratios enhances crop productivity and soil fertility.


2008 ◽  
Vol 17 (1) ◽  
pp. 73 ◽  
Author(s):  
A. NYKÄNEN ◽  
A. GRANSTEDT ◽  
L. JAUHIAINEN

Legume-based leys form the basis for crop rotations in organic farming as they fix nitrogen (N) from the atmosphere for the succeeding crops. The age, yield, C:N, biological N fixation (BNF) and total N of red clover-grass leys were studied for their influence on yields, N uptake and N use efficiency (NUE) of the two sequential cereal crops planted after the leys. Mineral N in deeper soil (30-90 cm) was measured to determine N leaching risk. Altogether, four field experiments were carried out in 1994-1998 at two sites. The age of the ley had no significant effect on the yields and N uptake of the two subsequent cereals. Surprisingly, the residual effect of the leys was negligible, at 0–20 kg N ha-1yr-1. On the other hand, the yield and C:N of previous red clover-grass leys, as well as BNF-N and total-N incorporated into the soil influenced subsequent cereals. NUEs of cereals after ley incorporation were rather high, varying from 30% to 80%. This might indicate that other factors, such as competition from weeds, prevented maximal growth of cereals. The mineral N content deeper in the soil was mostly below 10 kg ha-1 in the sandy soil of Juva, but was 5-25 kg ha-1 in clayey soil of Mietoinen.;


2019 ◽  
Vol 99 (3) ◽  
pp. 345-355
Author(s):  
Richard E. Engel ◽  
Carlos M. Romero ◽  
Patrick Carr ◽  
Jessica A. Torrion

Fertilizer NO3-N may represent a benefit over NH4-N containing sources in semiarid regions where rainfall is often not sufficient to leach fertilizer-N out of crop rooting zones, denitrification concerns are not great, and when NH3 volatilization concerns exist. The objective of our study was to contrast plant-N derived from fertilizer-15N (15Ndff), fertilizer-15N recovery (F15NR), total N uptake, grain yield, and protein of wheat (Triticum aestivum L.) from spring-applied NaNO3 relative to urea and urea augmented with urease inhibitor N-(n-butyl)thiophosphoric triamide (NBPT). We established six fertilizer-N field trials widespread within the state of Montana between 2012 and 2017. The trials incorporated different experimental designs and 15N-labeled fertilizer-N sources, including NaNO3, NH4NO3, urea, and urea + NBPT. Overall, F15NR and 15Ndff in mature crop biomass were significantly greater for NaNO3 than urea or urea + NBPT (P < 0.05). Crop 15Ndff averaged 53.8%, 43.9%, and 44.7% across locations for NaNO3, urea, and urea + NBPT, respectively. Likewise, crop F15NR averaged 52.2%, 35.8%, and 38.6% for NaNO3, urea, and urea + NBPT, respectively. Soil 15N recovered in the surface layer (0–15 cm) was lower for NaNO3 compared with urea and urea + NBPT. Wheat grain yield and protein were generally not sensitive to improvements in 15Ndff, F15NR, or total N uptake. Our study hypothesis that NaNO3 would result in similar or better performance than urea or urea + NBPT was confirmed. Use of NO3-N fertilizer might be an alternative strategy to mitigate fertilizer-N induced soil acidity in semiarid regions of the northern Great Plains.


2016 ◽  
Vol 96 (4) ◽  
pp. 386-399 ◽  
Author(s):  
Athyna N. Cambouris ◽  
Noura Ziadi ◽  
Isabelle Perron ◽  
Khaled D. Alotaibi ◽  
Mervin St. Luce ◽  
...  

Information on how soil texture and related soil properties affect corn (Zea mays L.) nitrogen (N) response is needed to improve N management in corn production. We conducted a study at 12-site yr in Quebec to assess the effect of N rate (0–250 kg N ha−1) and soil surface textural groups [clay, loam, sandy belonging to the gleysolic soil order (Sg), and sandy belonging to the podzolic soil order (Sp)] on corn grain yield, stover yield, total N uptake (TNU), nitrogen uptake efficiency (NUE), thousand kernel weight (TKW), test weight, and chlorophyll meter readings (CMR). Corn was more responsive to N rate in the clay soil textural group for most of the parameters due to lower soil N supply, and least responsive in the Sp group, except for test weight and CMR, due to possibly greater leaching in this group. The CMR at flowering accounted for 87%, 87%, 82%, and 25% of the variation in grain yield, TNU, TKW, and test weight, respectively. This study suggests that soil surface texture has a major influence on corn N response, but other soil properties such as drainage may also be important.


2011 ◽  
Vol 8 (6) ◽  
pp. 11311-11335 ◽  
Author(s):  
E. Gioseffi ◽  
A. de Neergaard ◽  
J. K. Schjoerring

Abstract. Soil-borne amino acids may constitute a nitrogen (N) source for plants in various terrestrial ecosystems but their importance for total N nutrition is unclear, particularly in nutrient-rich arable soils. One reason for this uncertainty is lack of information on how the absorption of amino acids by plant roots is affected by the simultaneous presence of inorganic N forms. The objective of the present study was to study absorption of glycine (Gly) and glutamine (Gln) by wheat roots and their interactions with nitrate (NO3–) and (NH4+) during uptake. The underlying hypothesis was that amino acids, when present in nutrient solution together with inorganic N, may lead to down-regulation of the inorganic N uptake. Amino acids were enriched with double-labelled 15N and 13C, while NO3– and NH4+ acquisition was determined by their rate of removal from the nutrient solution surrounding the roots. The uptake rates of NO3– and NH4+ did not differ from each other and were about twice as high as the uptake rate of organic N when the different N forms were supplied separately in concentrations of 2 mM. Nevertheless, replacement of 50 % of the inorganic N with organic N was able to restore the N uptake to the same level as that in the presence of only inorganic N. Co-provision of NO3– did not affect glycine uptake, while the presence of glycine down-regulated NO3– uptake. The ratio between 13C and 15N were lower in shoots than in roots and also lower than the theoretical values, reflecting higher C losses via respiratory processes compared to N losses. It is concluded that organic N can constitute a significant N-source for wheat plants and that there is an interaction between the uptake of inorganic and organic nitrogen.


Sign in / Sign up

Export Citation Format

Share Document