Evaluation of EPIC's snowmelt and water erosion submodels using data from the Peace River region of Alberta

1997 ◽  
Vol 77 (1) ◽  
pp. 41-50 ◽  
Author(s):  
H. Puurveen ◽  
R. C. Izaurralde ◽  
D. S. Chanasyk ◽  
J. R. Williams ◽  
R. F. Grant

Water erosion due to snowmelt is a major form of erosion in boreal regions of the Canadian Prairie. Evaluation of erosion models is an essential step before recommending their use in local or regional assessments of erosion rates and control methods. Using inputs from a runoff study conducted at La Glace, Alberta (55°25'N, 119°10'W) from 1984 to 1986, we evaluated the Erosion-Productivity Impact Calculator (EPIC) for its ability to simulate runoff and sediment yield from snowmelt events. The model was initialized with soil profile data acquired at the study site and complemented with data from standard soil databases (Albright series; loam, Dark Gray Chernozem). Daily weather data were acquired from the nearest climatological station (annual precipitation = 475 mm). Management data were as reported and included combinations of conventional and reduced tillage, annual and perennial, and fallow cropping. Mean runoff volume measured in 1985 was 57 mm while in 1986 it was 76 mm. EPIC over-predicted runoff volume by 25% in 1985 but under-predicted it by 7% in 1986. The period in which snowmelt occurred (mid-March – beginning of April) was predicted correctly. Under the conditions of this study, with many cropping inputs obtained from different sources, the model was unable to reproduce the reported management effects on runoff and sediment yield. EPIC simulated springmelt soil temperature trends at 9-cm depth, although the predicted temperatures in 1985 were generally underestimated. Our results suggest that the EPIC model calculates adequate values of runoff volumes and sediment yields during snowmelt. Key words: Runoff, sediment yield, soil erosion, crop rotations

1998 ◽  
Vol 78 (4) ◽  
pp. 699-706 ◽  
Author(s):  
S. I. Gill ◽  
M. A. Naeth ◽  
D. S. Chanasyk ◽  
V. S. Baron

Currently, there is interest in Western Canada in extending the grazing season using perennial and annual forages. Of greatest concern is the environmental sustainability of these grazing systems, with emphasis on their ability to withstand erosion. A study to examine the runoff and sediment yields of annual and perennial forages in central Alberta was initiated in 1994. Runoff and sediment yield were quantified under snowmelt and rainfall events for two seasons. Rainfall simulation was used to further examine runoff under growing season conditions. Four forage treatments (two annuals: triticale and a barley/triticale mixture and two perennials: smooth bromegrass and meadow bromegrass) and three grazing intensities (light, medium and heavy) were studied, each replicated four times. Total annual runoff was dominated by snowmelt. Generally runoff volumes, sediment yields, sediment ratios and runoff coefficients were all low. Bare ground increased with increasing grazing intensity and was significantly greater in annuals than perennials for all grazing intensities. Litter biomass decreased with increasing grazing intensity and was generally similar in all species for both years at heavy and medium grazing intensities. Results from the rainfall simulation corroborated those under natural rainfall conditions and generally indicated the sustainability of these grazing systems at this site. Key words: Forages, soil erosion, sustainability, rainfall simulation


2021 ◽  
pp. 439-454
Author(s):  
Omar Djoukbala ◽  
Mahmoud Hasbaia ◽  
Oussama Benselama ◽  
Boutaghane Hamouda ◽  
Salim Djerbouai ◽  
...  

AbstractThis study aims to estimate the eroded and transported sediment yields from the The Hodna basin (26,000 km2) situated in central Algeria by two approaches. In the first model, the data of the gauged subbasins are extrapolated to the ungauged areas based on the homogeneity of factors that influence the water erosion-sediment transport process. In this approach, the specific eroded and transported sediment yield in the Hodna basin is estimated to be 425 t/km2/yr. In an alternative approach, the eroded yield is estimated by mapping erosion using the (RUSLE) in a GIS environment. The obtained results show a high eroded sediment yield of approximately 610 t/km2/yr.The observed difference between the results of the two approaches can be explained by the amount of sediment that is eroded but is not transported by runoff.These two methods show high eroded and transported sediment yield values in the Hodna basin region; these high yields may seriously threaten the central flat zone with progressive deposition.


2012 ◽  
Vol 212-213 ◽  
pp. 141-144
Author(s):  
Pei Qing Xiao ◽  
Wen Yi Yao ◽  
Chang Gao Wang

Effect of shrub on runoff and sediment yield and its hydraulic mechanism of shrub were studied under rainfall intensities of 45, 87 and 127mm/h with 20°slope gradient using simulated rainfall experiment. the results showed that average runoff rates ranged from 39.7 to 126.0 L/min for bare plots and 0.77 to 4.83 L/min for shrub plots, and the runoff rates from shrub plots were much less than from bare plots. Average sediment yields varied from 3636.7 to 9436.3 g/min for bare plots and from 28.0 to 421.6 g/min for shrub plots. The critical flow shear stress of 1.65 N/m2 on shrub slope and 0.861 N/m2 on bare slope were got under experiment condition. The sediment yield increased with the increase of flow shear stress. The experiment results are meaningful for quantifying runoff and sediment reduction and deepening soil erosion mechanical process also.


CATENA ◽  
2019 ◽  
Vol 174 ◽  
pp. 199-205 ◽  
Author(s):  
Rong Lu ◽  
Yi-Fan Liu ◽  
Chao Jia ◽  
Ze Huang ◽  
Yu Liu ◽  
...  

2009 ◽  
Vol 62-64 ◽  
pp. 247-257
Author(s):  
C.S. Okoli

This paper reports of study that was conducted to evaluate runoff rates and sediment yield as affected by different plant densities of amaranthus at the experimental farm of Agricultural Engineering Department, Federal University of Technology, Akure, Ondo State, Nigeria. The experimentally based study is aimed at determining the runoff and sediment yield relationship as affected by different plant densities of amaranthus at the experimental farm. Treatment were based on four plant densities A (97 plant/m2) B (42 plant/m2) C (125 plant/m2) D (69 plant/m2), runoff depths and sediment yields were measured during the months of August to November 2003. A complete randomized block design was used to evaluate treatment methods on the basis of sediment yield and run off depth. A rainfall-Runoff model was established to enable future occurrence to be predicted. The water balance equation was used to compute the evapotransipiration (ET) for each plot. There were significant differences in sediment yields and run off depths among the treatments at 5% level of significance treatment. A (97 plant/m2) and C (125 plant/m2) were found to have the least amount of runoff and sediment yield, while treatment B (42 plant/m2) and D(69 plants/m2) had the highest amount of runoff and sediment yield. The result confirms the proposition that increased plant densities had a significant effect in reducing runoff and sediment for agricultural lands.


2016 ◽  
Vol 20 (6) ◽  
pp. 2295-2307 ◽  
Author(s):  
Matthew D. Berg ◽  
Franco Marcantonio ◽  
Mead A. Allison ◽  
Jason McAlister ◽  
Bradford P. Wilcox ◽  
...  

Abstract. Rangelands cover a large portion of the earth's land surface and are undergoing dramatic landscape changes. At the same time, these ecosystems face increasing expectations to meet growing water supply needs. To address major gaps in our understanding of rangeland hydrologic function, we investigated historical watershed-scale runoff and sediment yield in a dynamic landscape in central Texas, USA. We quantified the relationship between precipitation and runoff and analyzed reservoir sediment cores dated using cesium-137 and lead-210 radioisotopes. Local rainfall and streamflow showed no directional trend over a period of 85 years, resulting in a rainfall–runoff ratio that has been resilient to watershed changes. Reservoir sedimentation rates generally were higher before 1963, but have been much lower and very stable since that time. Our findings suggest that (1) rangeland water yields may be stable over long periods despite dramatic landscape changes while (2) these same landscape changes influence sediment yields that impact downstream reservoir storage. Relying on rangelands to meet water needs demands an understanding of how these dynamic landscapes function and a quantification of the physical processes at work.


2016 ◽  
Author(s):  
M. D. Berg ◽  
F. Marcantonio ◽  
M. A. Allison ◽  
J. McAlister ◽  
B. P. Wilcox ◽  
...  

Abstract. Rangelands cover a large portion of the earth’s land surface and are undergoing dramatic landscape changes. At the same time, these ecosystems face increasing expectations to meet growing water supply needs. To address major gaps in our understanding of rangeland hydrologic function, we investigated historical watershed-scale runoff and sediment yield in a dynamic landscape in central Texas, USA. We quantified the relationship between precipitation and runoff and analyzed reservoir sediment cores dated using Cesium-137 and Lead-210 radioisotopes. Local rainfall and streamflow showed no directional trend over a period of 85 years, resulting in a rainfall-runoff ratio that has been resilient to watershed changes. Reservoir sedimentation rates generally were higher before 1963, but have been much lower and very stable since that time. Our findings suggest that (1) rangeland water yields may be stable over long periods despite dramatic landscape changes while (2) these same landscape changes influence sediment yields that impact downstream reservoir storage. Relying on rangelands to meet water needs demands an understanding of how these dynamic landscapes function and a quantification of the physical processes at work.


2021 ◽  
Author(s):  
Ruoxiu Sun ◽  
Jianjun Zhang ◽  
Li Ma

<p>The Loess Plateau is located in arid and semi-arid region, and the fragmentation of vegetation patches is large. However, the combination of vegetation patches to the runoff and sediment yield on the slope is not clear yet. To evaluate the influence of vegetation patch type and number on runoff, sediment and hydrodynamic parameters, this study established field runoff plots with different landscape patch types, including bare land, S-road patches, strip patches, grid patches and random patches, as well as different quantities patches of 5, 10, 15 and 20. The results showed that the runoff yields of the four vegetation patch types decreased by 16.1%–48.7% (p<0.05) compared with that of bare land, whereas sediment yields decreased by 42.1%–86.5% (p<0.05). Also, the resistance coefficients of the poorly connected patch patterns, including strip patches, grid patches and random patches, ranged between 0.2–1.17 times higher than that of the well-connected S-road patch pattern, and the stream power decreased by 33.3%–50.7% (p<0.05). Under a uniform distribution of vegetation patches, the runoff rate and sediment yield decreased significantly with an increased number of patches. Although the increase in the number of vegetation patches also resulted in a decrease inflow shear stress and stream power to different degrees, the differences between the combinations with similar patch numbers were not significant. Besides, the sensitivity of soil to erosion decreased with an increasing number of the patch in the vegetation landscape, whereas the sensitivities of patch combinations with poor connectivity were lower than those with good connectivity. From this perspective, the optimization of vegetation in the Loess Plateau region requires sufficient consideration to reducing the connectivity of vegetation patches and increasing the density of patches.</p>


Sign in / Sign up

Export Citation Format

Share Document