scholarly journals Apoptosis-, proliferation, immune function-, and drug resistance- related genes in ER positive, HER2 positive and triple negative breast cancer

Neoplasma ◽  
2012 ◽  
Vol 59 (04) ◽  
pp. 424-432 ◽  
Author(s):  
A. KOLACINSKA ◽  
J. CHALUBINSKA ◽  
I. ZAWLIK ◽  
B. SZYMANSKA ◽  
E. BOROWSKA-GARGANISZ ◽  
...  
Breast Care ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. 2-2
Author(s):  
Günther Steger ◽  
Richard Bell ◽  
David Cameron ◽  
Rebecca A. Dent ◽  
Christian Jackisch

Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 549
Author(s):  
Amal Qattan ◽  
Taher Al-Tweigeri ◽  
Wafa Alkhayal ◽  
Kausar Suleman ◽  
Asma Tulbah ◽  
...  

Resistance to therapy is a persistent problem that leads to mortality in breast cancer, particularly triple-negative breast cancer (TNBC). MiRNAs have become a focus of investigation as tissue-specific regulators of gene networks related to drug resistance. Circulating miRNAs are readily accessible non-invasive potential biomarkers for TNBC diagnosis, prognosis, and drug-response. Our aim was to use systems biology, meta-analysis, and network approaches to delineate the drug resistance pathways and clinical outcomes associated with circulating miRNAs in TNBC patients. MiRNA expression analysis was used to investigate differentially regulated circulating miRNAs in TNBC patients, and integrated pathway regulation, gene ontology, and pharmacogenomic network analyses were used to identify target genes, miRNAs, and drug interaction networks. Herein, we identified significant differentially expressed circulating miRNAs in TNBC patients (miR-19a/b-3p, miR-25-3p, miR-22-3p, miR-210-3p, miR-93-5p, and miR-199a-3p) that regulate several molecular pathways (PAM (PI3K/Akt/mTOR), HIF-1, TNF, FoxO, Wnt, and JAK/STAT, PD-1/PD-L1 pathways and EGFR tyrosine kinase inhibitor resistance (TKIs)) involved in drug resistance. Through meta-analysis, we demonstrated an association of upregulated miR-93, miR-210, miR-19a, and miR-19b with poor overall survival outcomes in TNBC patients. These results identify miRNA-regulated mechanisms of drug resistance and potential targets for combination with chemotherapy to overcome drug resistance in TNBC. We demonstrate that integrated analysis of multi-dimensional data can unravel mechanisms of drug-resistance related to circulating miRNAs, particularly in TNBC. These circulating miRNAs may be useful as markers of drug response and resistance in the guidance of personalized medicine for TNBC.


Diagnostics ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 416
Author(s):  
Woo Young Sun ◽  
Jina Lee ◽  
Bong Kyun Kim ◽  
Jong Ok Kim ◽  
Joonhong Park

This study aimed to clarify the genetic difference between Korean triple-negative breast cancer (TNBC) and other breast cancer (BC) subtypes. TNBC was defined as the absence of hormonal receptors and human epidermal growth factor receptor 2 (HER2) amplification. DNA panel of the Ion Torrent Oncomine Comprehensive Assay (OCA) v3 was performed to identify somatic alteration in 48 specimens. In a total of 102 alterations (37 nonsense, 35 missense, 8 frameshift and 22 amplifications), 30 nucleotide alterations (24 nonsense, 1 missense, and 5 frameshift) were newly identified. The eight most commonly altered genes were PIK3CA, TP53, ERBB2, BRCA2, FANCD2, AKT1, BRCA1, and FANCA. TNBC had significantly lower mutation frequency in PIK3CA (TNBC vs. hormone receptor-positive and HER2-negative BC [HRPBC], p = 0.009), but higher mutation frequency in TP53 (TNBC vs. HRPBC, p = 0.036; TNBC vs. hormone receptor-positive and HER2- positive BC [HHPBC], p = 0.004). TNBC showed frequently higher Ki-67 expression than any positive BC (p = 0.004) due to HRPBC (p < 0.001). TNBC with high Ki-67/unmutated PIK3CA/mutated TP53 appears at a younger age (52.2 ± 7.6 years), compared to other subtypes (63.7 ± 11.0 years). TNBC with high Ki-67/unmutated PIK3CA/mutated TP53 may be related to relatively early onset BCThese findings demonstrate the genomic heterogeneity between TNBC and other BC subtypes and could present a new approach for molecular targeted therapy in TNBC patients.


2020 ◽  
Vol 29 ◽  
pp. 096368972092998 ◽  
Author(s):  
Chuang Du ◽  
Yan Wang ◽  
Yingying Zhang ◽  
Jianhua Zhang ◽  
Linfeng Zhang ◽  
...  

Triple-negative breast cancer (TNBC) is one of the most aggressive cancer types with high recurrence, metastasis, and drug resistance. Recent studies report that long noncoding RNAs (lncRNAs)-mediated competing endogenous RNAs (ceRNA) play an important role in tumorigenesis and drug resistance of TNBC. Although elevated lncRNA DLX6 antisense RNA 1 (DLX6-AS1) has been observed to promote carcinogenesis in various cancers, the role in TNBC remained unclear. In this study, expression levels of DLX6-AS1 were increased in TNBC tissues and cell lines when compared with normal tissues or breast fibroblast cells which were determined by quantitative real-time PCR (RT-qPCR). Then, CCK-8 assay, cell colony formation assay and western blot were performed in CAL-51 cells transfected with siRNAs of DLX6-AS1 or MDA-MB-231 cells transfected with DLX6-AS1 over expression plasmids. Knock down of DLX6-AS1 inhibited cell proliferation, epithelial-mesenchymal transition (EMT), decreased expression levels of BCL2 apoptosis regulator (Bcl-2), Snail family transcriptional repressor 1 (Snail) as well as N-cadherin and decreased expression levels of cleaved caspase-3, γ-catenin as well as E-cadherin, while up regulation of DLX6-AS1 had the opposite effect. Besides, knockdown of DLX6-AS1 in CAL-51 cells or up regulation of DLX6-AS1 in MDA-MB-231 cells also decreased or increased cisplatin resistance of those cells analyzed by MTT assay. Moreover, by using dual luciferase reporter assay, RNA immunoprecipitation and RNA pull down assay, a ceRNA which was consisted by lncRNA DLX6-AS1, microRNA-199b-5p (miR-199b-5p) and paxillin (PXN) was identified. And DLX6-AS1 function through miR-199b-5p/PXN in TNBC cells. Finally, results of xenograft experiments using nude mice showed that DLX6-AS1 regulated cell proliferation, EMT and cisplatin resistance by miR-199b-5p/PXN axis in vivo. In brief, DLX6-AS1 promoted cell proliferation, EMT, and cisplatin resistance through miR-199b-5p/PXN signaling in TNBC in vitro and in vivo.


Cancers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 525 ◽  
Author(s):  
Alexander Ring ◽  
Cu Nguyen ◽  
Goar Smbatyan ◽  
Debu Tripathy ◽  
Min Yu ◽  
...  

Background: Triple negative breast cancers (TNBCs) are an aggressive BC subtype, characterized by high rates of drug resistance and a high proportion of cancer stem cells (CSC). CSCs are thought to be responsible for tumor initiation and drug resistance. cAMP-response element-binding (CREB) binding protein (CREBBP or CBP) has been implicated in CSC biology and may provide a novel therapeutic target in TNBC. Methods: RNA Seq pre- and post treatment with the CBP-binding small molecule ICG-001 was used to characterize CBP-driven gene expression in TNBC cells. In vitro and in vivo TNBC models were used to determine the therapeutic effect of CBP inhibition via ICG-001. Tissue microarrays (TMAs) were used to investigate the potential of CBP and associated proteins as biomarkers in TNBC. Results: The CBP/ß-catenin/FOXM1 transcriptional complex drives gene expression in TNBC and is associated with increased CSC numbers, drug resistance and poor survival outcome. Targeting of CBP/β-catenin/FOXM1 with ICG-001 eliminated CSCs and sensitized TNBC tumors to chemotherapy. Immunohistochemistry of TMAs demonstrated a significant correlation between FOXM1 expression and TNBC subtype. Conclusion: CBP/β-catenin/FOXM1 transcriptional activity plays an important role in TNBC drug resistance and CSC phenotype. CBP/β-catenin/FOXM1 provides a molecular target for precision therapy in triple negative breast cancer and could form a rationale for potential clinical trials.


2021 ◽  
Author(s):  
Jianli Ma ◽  
Wenhui Zhao ◽  
Han Zhang ◽  
Zhong Chu ◽  
Huili Liu ◽  
...  

Abstract BackgroundBreast cancer is the main cause of death among women worldwide. More and more long non-coding RNAs (lncRNAs) have been identified as oncogenes or tumor suppressors during cancer development. However, whether ANRIL is involved in drug resistance in triple-negative breast cancer (TNBC) has not been investigated. MethodsLuciferase reporter assay was conducted to verify the binding of miR-125a and ANRIL. RT-PCR and western blot were performed to detect the expression of miR-125a, ANRIL and ENO1. Gene silence and overexpression experiments as well as CCK-8 and colony formation assays on TNBC cell lines were performed to determine the regulation of molecular pathways. Glycolysis analysis was performed with Seahorse extracellular flux methodology. ResultsANRIL expression in TNBC patients and TNBC cells was examined and we found that ANRIL expression was upregulated in both TNBC patients and TNBC cell lines. Knockdown of ANRIL increased the cytotoxic effect of ADR and inhibited HIF-1α-dependent glycolysis in TNBC cells. In addition, we found that ANRIL negatively regulated miR-125a expression in TNBC cell lines. Besides, a dual-luciferase reporter assay proved ANRIL functioned as a sponger of miR-125a. Further investigation revealed that ENO1 was a target of miR-125a and positively regulated by ANRIL in TNBC cells. Additionally, ANRIL upregulation reversed miR-125-mediated inhibition on HIF-1α-dependent glycolysis in TNBC cells. More notably, 2-deoxy-glucose (2-DG) attenuated ANRIL-induced increase of drug resistance in TNBC cells. ConclusionsTaken together, our study was the first to identify that knockdown of ANRIL plays an active role in overcoming the drug resistance in TNBC by inhibiting glycolysis through the miR-125a/ENO1 pathway, which maybe serve useful for the development of novel therapeutic targets.


2018 ◽  
Vol 172 (3) ◽  
pp. 713-723 ◽  
Author(s):  
Patricia Midori Murobushi Ozawa ◽  
Faris Alkhilaiwi ◽  
Iglenir João Cavalli ◽  
Danielle Malheiros ◽  
Enilze Maria de Souza Fonseca Ribeiro ◽  
...  

2019 ◽  
Vol 20 (12) ◽  
pp. 3080 ◽  
Author(s):  
Fan Wu ◽  
Robert D. McCuaig ◽  
Christopher R. Sutton ◽  
Abel H. Y. Tan ◽  
Yoshni Jeelall ◽  
...  

DUSP6 is a dual-specificity phosphatase (DUSP) involved in breast cancer progression, recurrence, and metastasis. DUSP6 is predominantly cytoplasmic in HER2+ primary breast cancer cells, but the expression and subcellular localization of DUSPs, especially DUSP6, in HER2-positive circulating tumor cells (CTCs) is unknown. Here we used the DEPArray system to identify and isolate CTCs from metastatic triple negative breast cancer (TNBC) patients and performed single-cell NanoString analysis to quantify cancer pathway gene expression in HER2-positive and HER2-negative CTC populations. All TNBC patients contained HER2-positive CTCs. HER2-positive CTCs were associated with increased ERK1/ERK2 expression, which are direct DUSP6 targets. DUSP6 protein expression was predominantly nuclear in breast CTCs and the brain metastases but not pleura or lung metastases of TNBC patients. Therefore, nuclear DUSP6 may play a role in the association with cancer spreading in TNBC patients, including brain metastasis.


2016 ◽  
Vol 23 (10) ◽  
pp. R485-R498 ◽  
Author(s):  
Elisabetta Pietri ◽  
Vincenza Conteduca ◽  
Daniele Andreis ◽  
Ilaria Massa ◽  
Elisabetta Melegari ◽  
...  

The androgen receptor (AR) is a ligand-dependent transcription factor, and its effects on breast range from physiological pubertal development and age-related modifications to cancer onset and proliferation. The prevalence of AR in early breast cancer is around 60%, and AR is more frequently expressed in ER-positive than in ER-negative tumors. We offer an overview of AR signaling pathways in different breast cancer subtypes, providing evidence that its oncogenic role is likely to be different in distinct biological and clinical scenarios. In particular, in ER-positive breast cancer, AR signaling often antagonizes the growth stimulatory effect of ER signaling; in triple-negative breast cancer (TNBC), AR seems to drive tumor progression (at least in luminal AR subtype of TNBC with a gene expression profile mimicking luminal subtypes despite being negative to ER and enriched in AR expression); in HER2-positive breast cancer, in the absence of ER expression, AR signaling has a proliferative role. These data represent the rationale for AR-targeting treatment as a potentially new target therapy in breast cancer subset using androgen agonists in some AR-positive/ER-positive tumors, AR antagonists in triple-negative/AR-positive tumors and in combination with anti-HER2 agents or with other signaling pathways inhibitors (including PI3K/MYC/ERK) in HER2-positive/AR-positive tumors. Only the ongoing and future prospective clinical trials will allow us to establish which agents are the best option in every specific condition, keeping in mind that there is evidence of opposite androgens and AR agonist/antagonist drug effects on cell proliferation particularly in AR-positive/ER-positive tumors.


Sign in / Sign up

Export Citation Format

Share Document