A carbon-based nanocarrier for efficient gene delivery

2021 ◽  
Author(s):  
Tahereh Kashkoulinejad-Kouhi ◽  
Shadi Sawalha ◽  
Shahrokh Safarian ◽  
Blanca Arnaiz

Aim: Several types of nanocarriers, most of which show significant cytotoxicity, have been developed to overcome the problem of gene-delivery barriers. Biocompatibility, low toxicity and water solubility of carbon nanodots (CNDs) are major advantages that recommend them as delivery systems. Materials & methods: We present a simple method to produce positively charged CNDs. Ethanolamine, ethylenediamine and hydrogen peroxide were utilized to synthesize these CNDs. Results & conclusion: Our results indicated that delivery of the CND–siGFP complex led to significant switching-off of the fluorescence of the GFP-expressing A549 cell. Next, the A549 cells were transfected with siRNA against BiP, which is a pivotal protein in the chemotherapy resistance of cancer cells. The expression levels of BiP decreased remarkably.

2017 ◽  
Vol 5 (42) ◽  
pp. 8322-8329 ◽  
Author(s):  
Shuqi Dong ◽  
Qixian Chen ◽  
Wei Li ◽  
Zhu Jiang ◽  
Jianbiao Ma ◽  
...  

The dendritic catiomer using biocompatible Zr-MOFs as the core exhibited a markedly higher transfection efficiency and lower cytotoxicity than the commercial gold standard branched PEI25k in A549 cells.


2003 ◽  
Vol 14 (5) ◽  
pp. 934-940 ◽  
Author(s):  
M. Laird Forrest ◽  
James T. Koerber ◽  
Daniel W. Pack

ChemPlusChem ◽  
2012 ◽  
Vol 77 (7) ◽  
pp. 584-591 ◽  
Author(s):  
Qing-Dong Huang ◽  
Jiang Ren ◽  
Hong Chen ◽  
Wen-Jing Ou ◽  
Ji Zhang ◽  
...  

MRS Advances ◽  
2019 ◽  
Vol 4 (3-4) ◽  
pp. 249-254
Author(s):  
Ngo Khoa Quang ◽  
Che Thi Cam Ha

ABSTRACTWe presented a green and simple method to synthesize carbon nanodots (C-dots) from millets using hydrothermal synthesis route for the first time. The obtained C-dots have average diameter ranging from 6 to 10 nm. Optical measurements showed the insight into the formation of functional groups on the particle surfaces, resulting in their good water solubility and bioconjugation. After treatment with C-dots, small subpopulation of the human cervical tumor cells became bright and exhibited multicolor fluorescence under different excitation wavelength. The achievement demonstrated potential applications of fluorescent C-dots in the field of biomedical application.


1990 ◽  
Vol 55 (10) ◽  
pp. 2377-2380
Author(s):  
Hamza A. Hussain

Nitroxide free radicals prepared from diethylamine, piperidine and pyrrolidine by oxidation with hydrogen peroxide were studied by ESR spectroscopy. The changes in the 14N splitting constant (aN) caused by the addition of KBr or tetraethylammonium bromide were measured in dependence on the concentration of the ions. For diethylamine nitroxide and piperidine nitroxide, the results are discussed in terms of two equilibria: the one, involving the anion, is associated with a gain or loss of hydrogen bonds to the nitroxide oxygen atom, the other is associated with the formation of solvent shared units involving the cation, which results in changes in the hydrogen bonding strenght. The large increase in the aN value in the case of pyrrolidine nitroxide is explained in terms of an interaction from one side of the positively charged N atom; the increase in aN in the case of diethylamine and piperidine nitroxides is explained in terms of interactions with both sides of the positively charged N atom.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 87
Author(s):  
Jaehong Park ◽  
Kyusik Kim ◽  
Sohee Jeong ◽  
Migyeom Lee ◽  
Tae-il Kim

In this work, highly osmotic oxidized sucrose-crosslinked polyethylenimine (SP2K) polymers were developed for gene delivery systems, and the transfection mechanism is examined. First, periodate-oxidized sucrose and polyethylenimine 2K (PEI2K) were crosslinked with various feed ratios via reductive amination. The synthesis was confirmed by 1H NMR and FTIR. The synthesized SP2K polymers could form positively charged (~40 mV zeta-potential) and nano-sized (150–200 nm) spherical polyplexes with plasmid DNA (pDNA). They showed lower cytotoxicity than PEI25K but concentration-dependent cytotoxicity. Among them, SP2K7 and SP2K10 showed higher transfection efficiency than PEI25K in both serum and serum-free conditions, revealing the good serum stability. It was found that SP2K polymers possessed high osmolality and endosome buffering capacity. The transfection experiments with cellular uptake inhibitors suggest that the transfection of SP2K polymers would progress by multiple pathways, including caveolae-mediated endocytosis. It was also thought that caveolae-mediated endocytosis of SP2K polyplexes would be facilitated through cyclooxygenase-2 (COX-2) expression induced by high osmotic pressure of SP2K polymers. Confocal microscopy results also supported that SP2K polyplexes would be internalized into cells via multiple pathways and escape endosomes efficiently via high osmolality and endosome buffering capacity. These results demonstrate the potential of SP2K polymers for gene delivery systems.


Author(s):  
Guoxin Tan ◽  
Jiayang Li ◽  
Dandan Liu ◽  
Hao Pan ◽  
Renfang Zhu ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 935
Author(s):  
Manas R. Biswal ◽  
Sofia Bhatia

Ocular gene therapy offers significant potential for preventing retinal dystrophy in patients with inherited retinal dystrophies (IRD). Adeno-associated virus (AAV) based gene transfer is the most common and successful gene delivery approach to the eye. These days, many studies are using non-viral nanoparticles (NPs) as an alternative therapeutic option because of their unique properties and biocompatibility. Here, we discuss the potential of carbon dots (CDs), a new type of nanocarrier for gene delivery to the retinal cells. The unique physicochemical properties of CDs (such as optical, electronic, and catalytic) make them suitable for biosensing, imaging, drug, and gene delivery applications. Efficient gene delivery to the retinal cells using CDs depends on various factors, such as photoluminescence, quantum yield, biocompatibility, size, and shape. In this review, we focused on different approaches used to synthesize CDs, classify CDs, various pathways for the intake of gene-loaded carbon nanoparticles inside the cell, and multiple studies that worked on transferring nucleic acid in the eye using CDs.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2533
Author(s):  
Moupriya Nag ◽  
Dibyajit Lahiri ◽  
Dipro Mukherjee ◽  
Ritwik Banerjee ◽  
Sayantani Garai ◽  
...  

The biggest challenge in the present-day healthcare scenario is the rapid emergence and spread of antimicrobial resistance due to the rampant use of antibiotics in daily therapeutics. Such drug resistance is associated with the enhancement of microbial virulence and the acquisition of the ability to evade the host’s immune response under the shelter of a biofilm. Quorum sensing (QS) is the mechanism by which the microbial colonies in a biofilm modulate and intercept communication without direct interaction. Hence, the eradication of biofilms through hindering this communication will lead to the successful management of drug resistance and may be a novel target for antimicrobial chemotherapy. Chitosan shows microbicidal activities by acting electrostatically with its positively charged amino groups, which interact with anionic moieties on microbial species, causing enhanced membrane permeability and eventual cell death. Therefore, nanoparticles (NPs) prepared with chitosan possess a positive surface charge and mucoadhesive properties that can adhere to microbial mucus membranes and release their drug load in a constant release manner. As the success in therapeutics depends on the targeted delivery of drugs, chitosan nanomaterial, which displays low toxicity, can be safely used for eradicating a biofilm through attenuating the quorum sensing (QS). Since the anti-biofilm potential of chitosan and its nano-derivatives are reported for various microorganisms, these can be used as attractive tools for combating chronic infections and for the preparation of functionalized nanomaterials for different medical devices, such as orthodontic appliances. This mini-review focuses on the mechanism of the downregulation of quorum sensing using functionalized chitosan nanomaterials and the future prospects of its applications.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 152
Author(s):  
Iulia Pinzaru ◽  
Cristian Sarau ◽  
Dorina Coricovac ◽  
Iasmina Marcovici ◽  
Crinela Utescu ◽  
...  

Betulinic acid (BA), a natural compound with various health benefits including selective antitumor activity, has a limited applicability in vivo due to its poor water solubility and bioavailability. Thus, this study focused on obtaining a BA nano-sized formulation with improved solubility and enhanced antitumor activity using silver nanocolloids (SilCo and PEG_SilCo) as drug carriers. The synthesis was performed using a chemical method and the physicochemical characterization was achieved applying UV-Vis absorption, transmission electron microscopy (TEM), Raman and photon correlation spectroscopy (PCS). The biological evaluation was conducted on two in vitro experimental models—hepatocellular carcinoma (HepG2) and lung cancer (A549) cell lines. The physicochemical characterization showed the following results: an average hydrodynamic diameter of 32 nm for SilCo_BA and 71 nm for PEG_SilCo_BA, a spherical shape, and a loading capacity of 54.1% for SilCo_BA and 61.9% for PEG_SilCo_BA, respectively. The in vitro assessment revealed a cell type- and time-dependent cytotoxic effect characterized by a decrease in cell viability as follows: (i) SilCo_BA (66.44%) < PEG_SilCo_BA (72.05%) < BA_DMSO (75.30%) in HepG2 cells, and (ii) SilCo_BA (75.28%) < PEG_SilCo_BA (86.80%) < BA_DMSO (87.99%) in A549 cells. The novel silver nanocolloids loaded with BA induced an augmented anticancer effect as compared to BA alone.


Sign in / Sign up

Export Citation Format

Share Document