scholarly journals Screening of ESBL Producing Multidrug Resistant E. coli from Urinary Tract Infection Suspected Cases in Southern Terai of Nepal

Author(s):  
Khushbu Yadav ◽  
Satyam Prakash
2018 ◽  
Vol 16 (2) ◽  
pp. 178-183
Author(s):  
Dhiraj Shrestha ◽  
Pratigya Thapa ◽  
Dinesh Bhandari ◽  
Hiramani Parajuli ◽  
Prakash Chaudhary ◽  
...  

Background: The study was designed to provide account of etiological agents of urinary tract infection in pediatric patients and the antimicrobial resistance pattern plus biofilm producing profile of the isolates.Methods: The prospective study was conducted in Alka Hospital, Nepal with 353 clean catch urine samples from children. It was obtained during July 2014 to January 2015 which were first cultured by semi-quantitative method, followed by antimicrobial susceptibility testing and biofilm production assay on Congo red agar. Multidrug- resistance, extensively drug- resistance and pandrug- resistance among isolates were considered as per international consensus.Results: Out of 353 samples, 64 (18.13%) showed positive growth in culture, confirming urinary tract infection. E. coli, 44 (68.8%) was the predominant organism followed by Klebsiella spp. 6 (14.1%). Most E. coli were sensitive to amikacin (93.2%) followed by nitrofurantoin (86.4%), and highly resistant to ampicillin (95.5%). Of 64 isolates, 23 (35.93%) were found to be multidrug- resistant strains. Biofilm was produced by 36 (56.25%) isolates.Conclusions: This study showed higher biofilm production and resistance to in-use antibiotics rendering ineffective for empirical use. Regular surveillance of resistance patterns should be done to regulate multidrug- resistant bugs and to ensure effective management of urinary tract infection in children in a tertiary care setups.Keywords: AMR; antimicrobial resistance; biofilm; urinary tract infection; UTI.


2019 ◽  
Vol 16 (4(Suppl.)) ◽  
pp. 0986
Author(s):  
Al-Hasnawy Et al.

Antibiotic resistance is a problem of deep scientific concern both in hospital and community settings. Rapid detection in clinical laboratories is essential for the judicious recognition of antimicrobial resistant organisms. So, the growth of Uropathgenic Escherichia coli (UPEC) isolates with Multidrug-resistant (MDR) and Extensively Drug-resistant (XDR) profiles that thwart therapy for (UTIs) has been detected and has straight squeezed costs and extended hospital stays. This study aims to detect MDR- and XDR-UPEC isolates. Out of 42 UPEC clinical isolates were composed from UTI patients. The bacterial strains were recognized by standard laboratory protocols. Susceptibility to antibiotic was measured by the standard disk diffusion method Out of 42 Uropathogenic E. coli, 37 (88.09%) were found to be MDR while 5 isolates (11.90%) were XDR. The present study concluded high prevalence of uropathogenic Escherichia coli (UPEC) with Multidrug-resistant (MDR) isolated from urinary tract infection in Babylon province – Iraq.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Januka Thapaliya ◽  
Priyatam Khadka ◽  
Shovana Thapa ◽  
Chenu Gongal

Abstract Objectives The pediatric urinary tract infection (UTI) often remains under-diagnosed or neglected owing to non-specific clinical presentations, patients failing to describe the actual situation and of clinical practice in diagnosis. The study was aimed to determine the etiologies of UTI in children with enhanced quantitative urine culture (EQUC) technique. Results Of enrolled 570 pediatric urine samples, the significant growth positivity was higher in EQUC 92 (16.15%) compared to standard urine culture (SUC) 73 (12.80%) technique. 20.6% of the significant isolates as detected with EQUC were missed on the SUC technique. The age group, in range 1–4 years, was more prone to the infection, where E. coli was the commonest pathogen. EQUC detected, probably all isolates, contributing UTI i.e. multidrug-resistant (MDR), extensive drug-resistant (XDR), and extended-spectrum β-lactamase (ESBL) producers, as some of them skipped on the SUC technique. Of total organisms isolated from EQUC, 46% were ESBL producer, 56.5% were MDR, and 1.4% were XDR. However, 40.5% ESBL, 44% MDR but no XDR detected on SUC. Hence a simple modification on conventional culture protocol could be a crucial modification for the detection of etiologies, contributing UTI, and hence to reduce inapt antimicrobial burden.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Yamirot Merga Duffa ◽  
Kumera Terfa Kitila ◽  
Dereje Mamuye Gebretsadik ◽  
Adane Bitew

Background. Urinary tract infection (UTI) is considered as the most common bacterial infection seen among the pediatric patients. Objective. This study was carried out in order to determine the prevalence of urinary tract infection in pediatric patients, identify bacterial uropathogens responsible for the infection, and study the antibiotic sensitivity patterns of bacterial isolates. Materials and Methods. A cross-sectional study designed and conducted from January to April 2014. Clean-voided midstream urine specimens were obtained from 384 pediatric patients less than or equal to 15 years in sterile universal bottles. Urine collected from each patient was inoculated onto CLED and blood agar plates using a calibrated inoculating loop with a capacity of 0.001 ml. Inoculated plates were incubated for 24–48 hours at 37°C at inverted position aerobically. Bacterial isolates were indentified and characterized by Gram stain and by using an array of standard routine biochemical tests. The antimicrobial susceptibility test was carried out by using the Kirby–Bauer disc diffusion method. Frequency distribution tables were used to describe the findings. Logistical regression was also used to estimate crude odds ratio (COR) with 95% confidence interval (CI) of positive responses to the different variables, and P values less than 0.05 were taken as statistically significant. Result. In this study, a total of 384 patients (199 males and 185 females) aged less than or equal to 15 years from whom urine samples were collected were enrolled. Of these patients, 61 (15.9%) had significant bacteriuria. Of the 185 females, 36 (19.5%) came up with positive cultures, while 25 (12.6%) of the 199 males had significant bacteriuria, and the largest number of study subjects were below the age of 3 years, and the largest positive culture was obtained from this age group, accounting for 35 (57.4%.) out of 61 positive cultures. Bacterial species belonging to six genera were isolated and identified from 61 positive cultures, and the genera were Escherichia, Klebsiella, Staphylococcus, Proteus, Acinetobacter, and Enterococcus. E. coli was isolated in 28 cases (49.5 %), followed by Klebsiella spp. in 17 cases (27.9%), Staphylococcus spp. in 5 patients (8.2%.) (S. aureus in one and coagulase-negative staphylococci in 4 cases), Enterococcus in 7 cases (11.5%), Proteus spp. in 3 cases (4.9%), and Acinetobacter in one case (1.6%). Of the bacterial isolates, E. coli was found out to be the most common pathogen followed by Klebsiella spp. Furthermore, E. coli and Klebsiella spp. were the most common pathogens in female patients accounting for 71.4% and 64.7%, respectively. Regarding susceptibility tests, E. coli and Klebsiella spp. were not 100% susceptible to any of the 11 antibiotics tested. Acinetobacter spp. had 100% resistance to three antibiotics: gentamicin (GN), trimethoprim-sulfamethoxazole (SXM), and augmentin (AMP). But they were 100% susceptible to ciprofloxacin (CIP), cefuroxime (CXM), norfloxacin (NOR), and ceftazidime (CAZ). On the contrary, Proteus spp. was 100% sensitive to all drugs except to nitrofurantoin. Species of Enterococcus had resistance of 71.4% to chloramphenicol (C) and 85.7% to both SXM and erythromycin. S. aureus was 100% susceptible to almost all drugs, while coagulase-negative staphylococci were not as susceptible as S. aureus. Multidrug resistance to two or more drugs was observed in 73.7% of the bacterial isolates. Conclusion. This study determined the prevalence of urinary tract infection in pediatric patients and highlighted the major bacterial uropathogens involved in UTI for the first time in the country. Furthermore, bacterial pathogen species and their frequency was consistent with the usually reported pattern, with E. coli being the most common organism isolated in cases of urinary tract infections followed by Klebsiella spp. Most of the bacterial isolates were multidrug resistant, and it is therefore suggested that appropriate antimicrobials should be administered to reduce the risk of multidrug resistant organisms developing and avert ineffectiveness of antibiotics. This condition indicates that antibiotic selection should be based on knowledge of the local prevalence of bacterial organisms and antibiotic sensitivities rather than empirical treatment. The present study indicated that ciprofloxacin (CIP), ceftazidime (CAZ), cefotaxime (CTX), cefuroxime (CXM), clindamycin (DA), and ceftriaxone (CRO) were the best antibiotics for the treatment of Gram-negative and Gram-positive bacterial uropathogens, respectively, in the study area relatively.


2020 ◽  
Author(s):  
Tulsi Nayaju ◽  
Milan Kumar Upreti ◽  
Alina Ghimire ◽  
Basudha Shrestha ◽  
Basanta Maharjan ◽  
...  

Abstract Background: The increased rate of urinary tract infection (UTI) in immunocompromised patients especially diabetic patients is a major public health problem in adults. Moreover, the infection with multidrug resistant strains producing extended spectrum beta-lactamase (ESBL) is a key obstacle in disease management among such vulnerable population. An immediate proper treatment depends on rapid diagnosis of UTI and screening of antimicrobial resistant pattern with highly sensitive methods which also reduces the possible urinary complications among the diabetic patients. Hence, this study was aimed to determine the occurrence of antibiotic resistant genes for β-lactamases; blTEM and blaCTX-M in uropathogenic Escherichia coli isolates from UTI suspected diabetic and non-diabetic patients. attendingMethods: A hospital-based cross-sectional study was conducted in Kathmandu Model Hospital in association with Central Department of Microbiology, TU from June to December 2018. A total of 1267 non-duplicate mid-stream urine specimens from diabetic and non-diabetic patients were obtained and processed immediately for isolation of uropathogens. The isolates were subjected for antibiotic susceptibility testing and ESBL confirmation. Finally, blaTEM and blaCTX-M ESBL genes were screened by using specific primers.Results: The overall prevalence of the urinary tract infection UTI was found to be 17.20%(218/1267) , out of which diabetic patients were significantly more infected with UTI accounting for 32.29%(31/96) as compared to non-diabetic persons, 15.97%(187/1171). A total of 221 bacterial were from 218 culture positive specimens in which E . coli was a most predominate one; 67.9%(150/221.). Forty-four percent (66/150) of the total E. coli was MDR and 37.33%(56/150) were ESBL producers. Among 56 isolates, 92.3%(12/13) from diabetic patents and 83.0% (44/53) were from non-diabetic patients. Furthermore, 84.85% of the screened ESBL producers were confirmed to possess either single or both of the blaTEM and blaCTX-M genes . The blaTEM and blaCTX-M genes were detected in 53.57% and 87.5% of the phenotypically ESBL confirmed E. coli .Conclusions: The UTI infection is an increasing problem in diabetic patients and infection with multidrug resistant strains specially ESBL producing uropathogens are causing a huge problem in disease management leading to high rate of mortality and morbidity of diabetic patients.


1970 ◽  
Vol 20 (2) ◽  
pp. 123-130 ◽  
Author(s):  
M Murshida Mahbub ◽  
Nafisa Azmuda ◽  
Belal Maumood ◽  
Sirajul Islam Khan ◽  
Nils-Kåre Birkeland ◽  
...  

A total of 27 isolates from patients with urinary tract infection (UTI) were screened and of these 12 were found to be Escherichia coli. All the E. coli isolates were multidrug resistant. Among the antibiotics, imipenem and polymyxin B were found to be the best, while oxacillin, cefsulodine and methicillin proved to be worst in effectiveness against the studied E. coli isolates. Only 42% of the E. coli were susceptible to trimethoprim-sulfamethoxazole (TMP–SMX), the current drug of choice for treating UTI. Middle ranged plasmids were observed in the studied isolates. Five strains expressed curli fimbriae and two elaborated cellulose; two other strains produced both curli and cellulose as extracellular matrix component. Key words: Escherichia coli; Urinary tract infection; Antimicrobial resistance; Curli fimbriaeDOI: http://dx.doi.org/10.3329/dujbs.v20i2.8972 DUJBS 2011; 20(2): 123-130


2018 ◽  
Vol 16 (2) ◽  
pp. 178-183
Author(s):  
Dhiraj Shrestha ◽  
Pratigya Thapa ◽  
Dinesh Bhandari ◽  
Hiramani Parajuli ◽  
Prakash Chaudhary ◽  
...  

Background: The study was designed to provide account of etiological agents of urinary tract infection in pediatric patients and the antimicrobial resistance pattern plus biofilm producing profile of the isolates.Methods: The prospective study was conducted in Alka Hospital, Nepal with 353 clean catch urine samples from children. It was obtained during July 2014 to January 2015 which were first cultured by semi-quantitative method, followed by antimicrobial susceptibility testing and biofilm production assay on Congo red agar. Multidrug- resistance, extensively drug- resistance and pandrug- resistance among isolates were considered as per international consensus.Results: Out of 353 samples, 64 (18.13%) showed positive growth in culture, confirming urinary tract infection. E. coli, 44 (68.8%) was the predominant organism followed by Klebsiella spp. 6 (14.1%). Most E. coli were sensitive to amikacin (93.2%) followed by nitrofurantoin (86.4%), and highly resistant to ampicillin (95.5%). Of 64 isolates, 23 (35.93%) were found to be multidrug- resistant strains. Biofilm was produced by 36 (56.25%) isolates.Conclusions: This study showed higher biofilm production and resistance to in-use antibiotics rendering ineffective for empirical use. Regular surveillance of resistance patterns should be done to regulate multidrug- resistant bugs and to ensure effective management of urinary tract infection in children in a tertiary care setups.


2004 ◽  
Vol 171 (4S) ◽  
pp. 22-23
Author(s):  
Shingo Minagawa ◽  
Chikara Ohyama ◽  
Shingo Hatakeyama ◽  
Kazunari Sato ◽  
Shigeru Sato ◽  
...  

2018 ◽  
Vol 1 (2) ◽  
pp. 40-57
Author(s):  
Abdulghani Alsamarai ◽  
Shler Khorshed ◽  
Imad Weli

Background: Antibiotic resistance emerged as clinical problem challenge the effective treatment of infections. Virulence factor may play an important role in the influence of antimicrobial resistance. Objective: To determine the frequency of resistance gene in E. coli clinical isolates from women with urinary tract infection. Materials and Methods: Fifteen E.coli clinical isolates were tested by PCR to determine their molecular characterization. Results: The bla CTX –M gene was not detected in 6.7% out of the tested 15 E. coli clinical isolates from women with urinary tract infection. However, bla OXA gene was detected in all E. coli tested clinical isolates from pregnant women, female student and diabetic women with urinary tract infection. While bla TEM gene and bla SHV gene were not detected in 33.3% and 40% out of the tested E. coli clinical isolates respectively. Conclusions: Four types of ESBL genes were detected, and shows new trend of distribution, which indicated the predominance of OXA and CTX-M genes.


2018 ◽  
pp. 100-108
Author(s):  
Dinh Khanh Le ◽  
Dinh Dam Le ◽  
Khoa Hung Nguyen ◽  
Xuan My Nguyen ◽  
Minh Nhat Vo ◽  
...  

Objectives: To investigate clinical characteristics, bacterial characteristics, drug resistance status in patients with urinary tract infections treated at Department of Urology, Hue University Hospital. Materials and Method: The study was conducted in 474 patients with urological disease treated at Department of Urology, Hue Universiry Hospital from July 2017 to April 2018. Urine culture was done in the patients with urine > 25 Leu/ul who have symptoms of urinary tract disease or infection symptoms. Patients with positive urine cultures were analyzed for clinical and bacterial characteristics. Results: 187/474 (39.5%) patients had symptoms associated with urinary tract infections. 85/474 (17.9%) patients were diagnosed with urinary tract infection. The positive urine culture rate was 45.5%. Symptoms of UTI were varied, and no prominent symptoms. E. coli accounts for the highest proportion (46.67%), followed by, Staphycoccus aureus (10.67%), Pseudomonas aeruginsa (8,0%), Streptococcus faecali and Proteus (2.67%). ESBL - producing E. coli was 69.23%, ESBL producing Enterobacter spp was 33.33%. Gram-negative bacteria are susceptible to meropenem, imipenem, amikacin while gram positive are vancomycin-sensitive. Conclusions: Clinical manifestations of urinary tract infections varied and its typical symptoms are unclear. E.coli is a common bacterium (46.67%). Isolated bacteria have a high rate of resistance to some common antibiotics especially the third generation cephalosporins and quinolones. Most bacteria are resistant to multiple antibiotics at the same time. Gram (+) bacteria are susceptible to vancomycin, and gram (-) bacteria are susceptible to cefoxitin, amikacin, and carbapenem. Key words: urinary tract infection


Sign in / Sign up

Export Citation Format

Share Document