scholarly journals Effect of Very-High-Flow Nasal Therapy on Airway Pressure and End-Expiratory Lung Impedance in Healthy Volunteers

2015 ◽  
Vol 60 (10) ◽  
pp. 1397-1403 ◽  
Author(s):  
R. L. Parke ◽  
A. Bloch ◽  
S. P. McGuinness
2011 ◽  
Vol 39 (6) ◽  
pp. 1103-1110 ◽  
Author(s):  
J. E. Ritchie ◽  
A. B. Williams ◽  
C. Gerard ◽  
H. Hockey

In this study, we evaluated the performance of a humidified nasal high-flow system (Optiflow™, Fisher and Paykel Healthcare) by measuring delivered FiO2 and airway pressures. Oxygraphy, capnography and measurement of airway pressures were performed through a hypopharyngeal catheter in healthy volunteers receiving Optiflow™ humidified nasal high flow therapy at rest and with exercise. The study was conducted in a non-clinical experimental setting. Ten healthy volunteers completed the study after giving informed written consent. Participants received a delivered oxygen fraction of 0.60 with gas flow rates of 10, 20, 30, 40 and 50 l/minute in random order. FiO2, FEO2, FECO2 and airway pressures were measured. Calculation of FiO2 from FEO2 and FECO2 was later performed. Calculated FiO2 approached 0.60 as gas flow rates increased above 30 l/minute during nose breathing at rest. High peak inspiratory flow rates with exercise were associated with increased air entrainment. Hypopharyngeal pressure increased with increasing delivered gas flow rate. At 50 l/minute the system delivered a mean airway pressure of up to 7.1 cmH2O. We believe that the high gas flow rates delivered by this system enable an accurate inspired oxygen fraction to be delivered. The positive mean airway pressure created by the high flow increases the efficacy of this system and may serve as a bridge to formal positive pressure systems.


2017 ◽  
Vol 4 (1) ◽  
pp. e000200 ◽  
Author(s):  
Miyuki Okuda ◽  
Nobuya Tanaka ◽  
Kazuyuki Naito ◽  
Takao Kumada ◽  
Koji Fukuda ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alberto Noto ◽  
Claudia Crimi ◽  
Andrea Cortegiani ◽  
Massimiliano Giardina ◽  
Filippo Benedetto ◽  
...  

AbstractDuring the COVID-19 pandemic, the need for noninvasive respiratory support devices has dramatically increased, sometimes exceeding hospital capacity. The full-face Decathlon snorkeling mask, EasyBreath (EB mask), has been adapted to deliver continuous positive airway pressure (CPAP) as an emergency respiratory interface. We aimed to assess the performance of this modified EB mask and to test its use during different gas mixture supplies. CPAP set at 5, 10, and 15 cmH2O was delivered to 10 healthy volunteers with a high-flow system generator set at 40, 80, and 120 L min−1 and with a turbine-driven ventilator during both spontaneous and loaded (resistor) breathing. Inspiratory CO2 partial pressure (PiCO2), pressure inside the mask, breathing pattern and electrical activity of the diaphragm (EAdi) were measured at all combinations of CPAP/flows delivered, with and without the resistor. Using the high-flow generator set at 40 L min−1, the PiCO2 significantly increased and the system was unable to maintain the target CPAP of 10 and 15 cmH2O and a stable pressure within the respiratory cycle; conversely, the turbine-driven ventilator did. EAdi significantly increased with flow rates of 40 and 80 L min−1 but not at 120 L min−1 and with the turbine-driven ventilator. EB mask can be safely used to deliver CPAP only under strict constraints, using either a high-flow generator at a flow rate greater than 80 L min−1, or a high-performance turbine-driven ventilator.


2018 ◽  
Vol 38 (1) ◽  
pp. 8-15
Author(s):  
Salim Etsouri ◽  
Ferhat Kaci ◽  
Mohamed Bouaziz

The Continental intercalary groundwater is highly sought for its water as resources hugely mobilized in Northern Sahara. A very high flow rate and output pressure characterizes this underground water. It amounts from 50 to 400 l.s-1 for the flow, and from 5 to 40 bar for pressure. A survey of the Northern Sahara Aquifer System was essential to prove the existence of this potential. This energy appears into the artesian form, which remains very considerable for a very long time in most drilling. We have realised that this energy is immense, as well as the expanded volume of the groundwater, and the importance of its use in agriculture. Unfortunately, this potential remains untapped to this day and the energy of this water is completely neglected. Several turbo generator and/or inverted pump (PATs) integration tests were undergone. The new concept of reflection with respect to the environment and sustainable development has led us to structure our work towards the extension of this potential in order to extract the exploitable energy.


Sign in / Sign up

Export Citation Format

Share Document