scholarly journals Albian drilling's and its hydropower potential in Algeria: Study and exploitation

2018 ◽  
Vol 38 (1) ◽  
pp. 8-15
Author(s):  
Salim Etsouri ◽  
Ferhat Kaci ◽  
Mohamed Bouaziz

The Continental intercalary groundwater is highly sought for its water as resources hugely mobilized in Northern Sahara. A very high flow rate and output pressure characterizes this underground water. It amounts from 50 to 400 l.s-1 for the flow, and from 5 to 40 bar for pressure. A survey of the Northern Sahara Aquifer System was essential to prove the existence of this potential. This energy appears into the artesian form, which remains very considerable for a very long time in most drilling. We have realised that this energy is immense, as well as the expanded volume of the groundwater, and the importance of its use in agriculture. Unfortunately, this potential remains untapped to this day and the energy of this water is completely neglected. Several turbo generator and/or inverted pump (PATs) integration tests were undergone. The new concept of reflection with respect to the environment and sustainable development has led us to structure our work towards the extension of this potential in order to extract the exploitable energy.

Author(s):  
Xiao-kai Sun ◽  
Wei Peng ◽  
Jie Wang ◽  
Pei-xue Jiang

In the present study, effect of internal crossflow on double jet film cooling holes were investigated. In our previous study, four types of film cooling holes was investigated and the double jet holes showed better cooling efficiency. However, in practice, the coolant in high temperature turbine blade has a very high flow rate and turbulence, so it is necessary to take the effect of coolant supply condition at the hole entrance into consideration. So the influence of coolant supply condition was investigated, the plenum condition and the crossflow condition were studied to show the influence of the coolant supply condition. And the cylindrical hole was also investigated as comparison. The results showed that there is a profound effect of how the coolant is supplied to the hole on the film-cooling performance in the near hole region. Therefore, crossflow at the hole entry side has be taken into account when modeling film-cooling.


Author(s):  
M. M. Burakov ◽  
V. G. Burkush ◽  
M. M. Tynbayev

The patterns of restoration of the piezometric level of groundwater in the aquifer under test in a layered aquifer system with the overflow of water from the adjacent horizon after stopping the experimental constant-rate pumping tests, have been analyzed; the physico-mathematical model of piezometric level restoration has been formed and analyzed. It has been shown that the restoration of the level is carried out in the same way as after stopping the pumping from a pressure isolated aquifer. In other words, it has been assumed that pumping with a constant flow rate continues even after it has been stopped, and at the time of self-stopping through the well from which the pumping is performed, water is pumped into the test aquifer with the same flow rate. As a result, the disturbance flow rate becomes zero, and the groundwater level in the tested horizon is restored to an unperturbed position. In addition to this, during test filtration testing of layered systems with overflow, the groundwater flow formed during the injection, directed from the tested horizon to the adjacent one, completely "locks" the groundwater flow formed during the pumping out of the adjacent horizon to the tested one. Accordingly, the processing and interpretation of the results of tracking the recovery level should be carried out in full compliance with the existing methodological recommendations.


2020 ◽  
Vol 19 (9) ◽  
pp. 1550-1613
Author(s):  
O.E. Akimova ◽  
S.K. Volkov ◽  
E.A. Gladkaya ◽  
I.M. Kuzlaeva

Subject. The article discusses the sustainability of regional economy development, its definition, and the substance of sustainable development. Objectives. We aim at performing a comprehensive analysis of indicators of sustainability and adaptability of regional development in the context of digitalization, formulating a strategy for economic behavior that takes into account the multidimensional nature of regional inequality and is focused on boosting the economic potential of regions. Methods. The study draws on dialectic and systems approaches, general scientific methods of retrospective, situational, economic and statistical, and comparative analysis. Results. The sustainability of the region focuses on improving the human welfare over long time horizon. This happens in three areas, i.e. maximizing the efficiency of resource use; ensuring justice and democracy; minimizing resource consumption and environmental damage. The stability of the region can be assessed by using one parameter, or by combining the parameters in accordance with the type of region and expected results. Conclusions. The adaptation of a region to changing conditions depends on its type (‘adapted’, ‘adaptive’, and ‘non-adapted’). Regional inequality has two main components: difference in economic potential and social satisfaction of residents. Another component, affecting the stability and adaptability of regions, is the level of their digitalization. However, some regions have only formally embarked on the path of digitalization. Moreover, a focus on smart technologies, solutions and digitalization often leads to ignoring the goals of sustainable development. Smart technologies should be aimed at ensuring sustainability within the framework of the smart sustainable city concept.


2021 ◽  
Vol 11 (7) ◽  
pp. 2909
Author(s):  
Weiqing Huang ◽  
Liyi Lai ◽  
Zhenlin Chen ◽  
Xiaosheng Chen ◽  
Zhi Huang ◽  
...  

Imitating the structure of the venous valve and its characteristics of passive opening and closing with changes in heart pressure, a piezoelectric pump with flexible valves (PPFV) was designed. Firstly, the structure and the working principle of the PPFV were introduced. Then, the flexible valve, the main functional component of the pump, was analyzed theoretically. Finally, an experimental prototype was manufactured and its performance was tested. The research proves that the PPFV can achieve a smooth transition between valved and valveless by only changing the driving signal of the piezoelectric (PZT) vibrator. The results demonstrate that when the driving voltage is 100 V and the frequency is 25 Hz, the experimental flow rate of the PPFV is about 119.61 mL/min, and the output pressure is about 6.16 kPa. This kind of pump can realize the reciprocal conversion of a large flow rate, high output pressure, and a small flow rate, low output pressure under the electronic control signal. Therefore, it can be utilized for fluid transport and pressure transmission at both the macro-level and the micro-level, which belongs to the macro–micro combined component.


2018 ◽  
Vol 152 ◽  
pp. 02015
Author(s):  
Yoong Sion Ong ◽  
Ken Sim Ong ◽  
Y.k. Tan ◽  
Azadeh Ghadimi

A conventional design of rainwater harvesting system collects and directs the rainwater through water piping from roof of building to the water storage. The filtration system which locates before the water tank storage and first flush bypass system is the main focus of the research. A filtration system consists of a control volume of filter compartment, filter screen (stainless steel mesh) and water piping that direct the water flow. The filtration efficiency of an existing filter “3P Volume Filter VF1” by industrial company is enhanced. A full scale filter design prototype with filter screen of 1000 μm stainless steel metal mesh is tested to compare with the original filter system design. Three types of water inlet setups are tested. Among the proposed water inlet setups, the 90° inlet setup with extension provides the best filtration rate per unit time, following by the 45° inlet setup. The 45° and 90° inlet setup has similar filtration efficiency at low to medium flow rate while 45° inlet setup has better efficiency at high flow rate. The filtration efficiency with the 90° inlet setup with extension is observed to maintain at highest value at medium to high flow rate. The overall filtration performance achieved by the 90° inlet setup with extension at low to high flow rate is between 34.1 to 35.7%.


1992 ◽  
Vol 96 (3) ◽  
pp. 1228-1233 ◽  
Author(s):  
Laszlo Gyorgyi ◽  
Richard J. Field ◽  
Zoltan Noszticzius ◽  
William D. McCormick ◽  
Harry L. Swinney

2019 ◽  
Vol 36 (4) ◽  
pp. 401-410 ◽  
Author(s):  
Xiao-Qi Jia ◽  
Bao-Ling Cui ◽  
Zu-Chao Zhu ◽  
Yu-Liang Zhang

Abstract Affected by rotor–stator interaction and unstable inner flow, asymmetric pressure distributions and pressure fluctuations cannot be avoided in centrifugal pumps. To study the pressure distributions on volute and front casing walls, dynamic pressure tests are carried out on a centrifugal pump. Frequency spectrum analysis of pressure fluctuation is presented based on Fast Fourier transform and steady pressure distribution is obtained based on time-average method. The results show that amplitudes of pressure fluctuation and blade-passing frequency are sensitive to the flow rate. At low flow rates, high-pressure region and large pressure gradients near the volute tongue are observed, and the main factors contributing to the pressure fluctuation are fluctuations in blade-passing frequency and high-frequency fluctuations. By contrast, at high flow rates, fluctuations of rotating-frequency and low frequencies are the main contributors to pressure fluctuation. Moreover, at low flow rates, pressure near volute tongue increases rapidly at first and thereafter increases slowly, whereas at high flow rates, pressure decreases sharply. Asymmetries are observed in the pressure distributions on both volute and front casing walls. With increasing of flow rate, both asymmetries in the pressure distributions and magnitude of the pressure decrease.


Sign in / Sign up

Export Citation Format

Share Document