scholarly journals Methodology A rapid method to increase the number of F1 plants in pea (Pisum sativum) breeding programs

2012 ◽  
Vol 11 (3) ◽  
pp. 2729-2732 ◽  
Author(s):  
M.A. Espósito ◽  
P. Almirón ◽  
I. Gatti ◽  
V.P. Cravero ◽  
F.S.L. Anido ◽  
...  
Plant Disease ◽  
1999 ◽  
Vol 83 (1) ◽  
pp. 51-54 ◽  
Author(s):  
D. K. Malvick ◽  
J. A. Percich

Aphanomyces root rot is a serious disease of pea (Pisum sativum), and additional sources of resistance are needed for development of disease-resistant cultivars. Accessions (n = 123) from the P. sativum Plant Introduction (PI) collection with the highest relative levels of resistance to one strain of Aphanomyces euteiches were previously identified from among approximately 2,500 accessions evaluated. The chosen 123 accessions were evaluated in this study for resistance to root rot caused by multiple strains of this pathogen. Five strains representing different US geographical locations and pathogenicity characteristics were used to evaluate pea seedlings in a greenhouse. Disease severity (DS) and percent loss of fresh biomass (inoculated vs. non-inoculated plants) were determined 15 days after inoculation. Significant differences (P = 0.05) in levels of DS and biomass loss (BL) occurred among the accessions after inoculation individually with the five strains. The relative rank of accessions based on DS and BL varied with the strain of A. euteiches used for inoculations. The 20 accessions with the lowest DS after inoculation with each strain were identified. Based on lowest DS, two accessions were among the 20 identified with all five individual strains, and four other accessions were among the 20 identified with four of the five strains. The results suggest that the P. sativum PI collection contains useful accessions for breeding programs aimed at developing pea varieties with resistance to A. euteiches.


2021 ◽  
Vol 34 (2) ◽  
pp. 195-203
Author(s):  
Viliana Vasileva ◽  
Valentin Kosev

Seven peas (Pisum sativum L.) varieties different originated, i.e, X07P54, X06PWY, NDPO80138-B-2, CA1P, L020140, Wt6803 and Mir were studied. Biochemical assessment of fresh aboveground biomass and seeds of peas varieties were done. At the beginning of flowering stage the NDPO80138-B-2 and X07P54 were reported high levels for crude protein (22.33% and 21.87%), crude fibre (25.94% and 25.76%) and crude ash (10.39% and 9.47%). In technical maturity with high crude protein and crude fibre contents NDPO80138-B-2 (21.59% and 21.38%), X06PWY (19.95% and 21.36%), X07P54 (19.78% and 20.57%) and CA1P (19.60% and 22.53%) were distinguished; by calcium CA1P (2.09%), and by phosphorus Wt6803 (0.54%). More significant variability in phosphorus content (21.27%) and Ca:P ratio (25.65%) in fresh biomass was observed. The lowest coefficient of variation was found for crude fibre (5.43%), crude ash (7.81%) and crude protein content (9.00%). The variability of parameters in technical maturity was found low and ranges from 2.34% for crude protein to 9.27 for phosphorus. The green mass yield is positively correlated with the calcium content (r = 0.581), phosphorus (r = 0.316) and crude ash (r = 0.077) and the seed yield positive correlated with calcium content (r = 0.79). The relationships found between qualitative indicators could be used in the breeding programs of peas.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1869 ◽  
Author(s):  
Hatice Sari ◽  
Duygu Sari ◽  
Tuba Eker ◽  
Bilal Aydinoglu ◽  
Huseyin Canci ◽  
...  

The Neoplasm trait in pea pods is reported to be due to the lack of ultraviolet (UV) light in glasshouse conditions or in response to pea weevil (Bruchus pisorum L.) damage. This pod deformation arises from the growth of non-meristematic tissue on pods of domesticated peas (Pisum sativum L. subsp. sativum). Neither expressivity, nor the effect of pea weevil on neoplasm in the tall wild pea (P. sativum L. subsp. elatius (M. Bieb.) Asch. & Graebn.), have been adequately studied. We aimed to study the expression and inheritance of neoplasm in the tall wild pea and crosses between domesticated and tall wild peas grown in the glasshouse (without pea weevils) and in the field (with pea weevils) under natural infestation conditions. Neoplasm was found in all pods in tall wild peas when grown in the glasshouse, while it was not detected on pods of field-grown plants despite heavy pea weevil damage. In inter-subspecific crosses between P. sativum subsp. sativum and P. sativum subsp. elatius, all F1 plants had neoplastic pods, and the F2 populations segregated in a good fit ratio of 3 (neoplasm): 1 (free from neoplasm) under glasshouse conditions, which suggests that neoplasm on pods of the tall wild pea was controlled by a single dominant gene. Expressivity of neoplasm in the progeny differed from parent to parent used in inter-subspecific crosses. There was no relationship between neoplasm and damage by pea weevil under heavy insect epidemics under field conditions. The neoplasm occurring under glasshouse conditions may be due to one or to a combination of environmental factors. Since wild peas are useful genetic resources for breeding programs aiming at fresh pea production that could be utilized under glasshouse conditions, negative selection could be considered in segregating populations.


2016 ◽  
Vol 29 (10) ◽  
pp. 743-749 ◽  
Author(s):  
Stefano Pavan ◽  
Adalgisa Schiavulli ◽  
Angelo Raffaele Marcotrigiano ◽  
Nicoletta Bardaro ◽  
Valentina Bracuto ◽  
...  

Crenate broomrape (Orobanche crenata Forsk.) is a devastating parasitic weed threatening the cultivation of legumes around the Mediterranean and in the Middle East. So far, only moderate levels of resistance were reported to occur in pea (Pisum sativum L.) natural germplasm, and most commercial cultivars are prone to severe infestation. Here, we describe the selection of a pea line highly resistant to O. crenata, following the screening of local genetic resources. Time series observations show that delayed emergence of the parasite is an important parameter associated with broomrape resistance. High performance liquid chromatography connected to tandem mass spectrometry analysis and in vitro broomrape germination bioassays suggest that the resistance mechanism might involve the reduced secretion of strigolactones, plant hormones exuded by roots and acting as signaling molecules for the germination of parasitic weeds. Two years of replicated trials in noninfested fields indicate that the resistance is devoid of pleiotropic effects on yield, in contrast to pea experimental mutants impaired in strigolactone biosynthesis and, thus, is suitable for use in breeding programs.


2006 ◽  
Vol 4 (2) ◽  
pp. 22-28 ◽  
Author(s):  
Oksana Y Shtark ◽  
Tanyana N Danilova ◽  
Tatiana S Naumkina ◽  
Angrei G Vasilchikov ◽  
Vladimir K Chebotar ◽  
...  

Double inoculation with arbuscular mycorhizal fungi and nodule bacteria was shown to increase seed productivity and plant dry weight in most of pea genotypes studied. Sometimes it can exceed the effect of mineral fertilizers.Seed productivity and plant dry weight were chosen as main criteria for evaluation of symbiosis effectiveness of legume crops. Expediency of legume breeding to improve symbiotic potential of legume varieties was proven and the genotypes to be used in such breeding programs were identified.


2020 ◽  
Vol 33 (1) ◽  
pp. 107-121
Author(s):  
Slavka Kalapchieva ◽  
Valentin Kosev ◽  
Viliana Vasileva

The field trial was conducted during the growing season 2017-2019 in the experimental fields of the Maritsa Vegetable Crop Institute, Plovdiv, Bulgaria. The study used 10 samples of garden peas (Pisum sativum L). for measurement. Plant tall (?m), height to first fertile node (?m), length of internode (cm), number of tillers, number of branches, number of ineffective nodes, total number of nodes, total number of pods per plant, one pod per fruiting handle, two pods per fruiting handle, pod length (?m), pod width (?m), pod weight per plant, weight of green grains per plant (g), % filled grains, % unfilled grains, average number of grains per pod were assessed. Analysis variance showed significant differences between the genotypes of garden peas in all the traits studied. A lower level of the genetic variance was found compared to the phenotypic one by the number of branches, total number of nodes and one pod per fruiting handle. The coefficient of genetic variation is higher than the phenotypic one for most of the traits and ranged from 5.51-5.82% for pod width and total number of nodes to 56.98-59.09% for number of branches and % unfilled grains. For signs of plant tall (98.32% and 129.31%), height to first fertile node (91.22% and 29.32%), weight of pods per plant (86.83%, 29.32), weight of green grains per plant (83.7%, 11.89%) and % filled grains (77.81% and 24.96%). It was found high inheritance combined with high genetic progress. This is a prerequisite for increasing the biological potential on these traits and a real opportunity to create new forms of garden peas possessing such qualities. The best genotypes were found GEN 1 (22/16-n.), GEN 6 (Marsy-n.), GEN 4 (Plovdiv-n.) and GEN 9 (1/17-n.). They may be used in new breeding programs and hybrid lines may be entered in competitive variety lists.


Genome ◽  
2005 ◽  
Vol 48 (2) ◽  
pp. 257-272 ◽  
Author(s):  
B Tar'an ◽  
C Zhang ◽  
T Warkentin ◽  
A Tullu ◽  
A Vandenberg

Random amplified polymorphic DNA, simple sequence repeat, and inter-simple sequence repeat markers were used to estimate the genetic relations among 65 pea varieties (Pisum sativum L.) and 21 accessions from wild Pisum subspecies (subsp.) abyssinicum, asiaticum, elatius, transcaucasicum, and var. arvense. Fifty-one of these varieties are currently available for growers in western Canada. Nei and Li's genetic similarity (GS) estimates calculated using the marker data showed that pair-wise comparison values among the 65 varieties ranged from 0.34 to 1.00. GS analysis on varieties grouped according to their originating breeding programs demonstrated that different levels of diversity were maintained at different breeding programs. Unweighted pair-group method arithmetic average cluster analysis and principal coordinate analysis on the marker-based GS grouped the cultivated varieties separately from the wild accessions. The majority of the food and feed varieties were grouped separately from the silage and specialty varieties, regardless of the originating breeding programs. The analysis also revealed some genetically distinct varieties such as Croma, CDC Handel, 1096M-8, and CDC Acer. The relations among the cultivated varieties, as revealed by molecular-marker-based GS, were not significantly correlated with those based on the agronomic characters, suggesting that the 2 systems give different estimates of genetic relations among the varieties. However, on a smaller scale, a consistent subcluster of genotypes was identified on the basis of agronomic characters and their marker-based GS. Furthermore, a number of variety-specific markers were identified in the current study, which could be useful for variety identification. Breeding strategies to maintain or enhance the genetic diversity of future varieties are proposed.Key words: Pisum sativum, molecular markers, genetic relationships, cluster analysis.


Euphytica ◽  
2020 ◽  
Vol 216 (11) ◽  
Author(s):  
Federico Cazzola ◽  
Carolina Julieta Bermejo ◽  
Maria Fernanda Guindon ◽  
Enrique Cointry

Plant Disease ◽  
2015 ◽  
Vol 99 (5) ◽  
pp. 580-587 ◽  
Author(s):  
Hieu Sy Tran ◽  
Ming Pei You ◽  
Tanveer N. Khan ◽  
Martin J. Barbetti

Black spot, also known as Ascochyta blight, is the most important disease on field pea (Pisum sativum). It is caused by a complex of pathogens, the most important of which in Australia include Didymella pinodes, Phoma pinodella, and P. koolunga. The relative proportions of these and other component pathogens of the complex fluctuate widely across time and geographic locations in Australia, limiting the ability of breeders to develop varieties with effective resistance to black spot. To address this, 40 field pea genotypes were tested under controlled environment conditions for their individual stem and leaf responses against these three pathogens. Disease severity was calculated as area under disease progress curve (AUDPC), and subsequently converted to mean rank (MR). The overall rank (OR) for each pathogen was used to compare response of genotypes under inoculation with each pathogen. The expressions of host resistance across the field pea genotypes were largely dependent upon the individual test pathogen and whether the test was on stem or leaf. Overall, P. koolunga caused most severe stem disease; significantly more severe than either D. pinodes or P. pinodella. This is the first report of the host resistance identified in field pea to P. koolunga; the five genotypes showing highest resistance on stem, viz. 05P778-BSR-701, ATC 5338, ATC 5345, Dundale, and ATC 866, had AUDPC MR values <250.4, while the AUDPC MR values of the 19 genotypes showing the best resistance on leaf was less than 296.8. Two genotypes, ATC 866 and Dundale, showed resistance against P. koolunga on both stem and leaf. Against D. pinodes, the four and 16 most resistant genotypes on stem and leaf had AUDPC MR values <111.2 and <136.6, respectively, with four genotypes showing resistance on both stem and leaf including 05P770-BSR-705, Austrian Winter Pea, 06P822-(F5)-BSR-6, and 98107-62E. Against P. pinodella, four and eight genotypes showing the best resistance on stem and leaf had AUDPC MR values <81.3 and <221.9, respectively; three genotypes, viz. 98107-62E, Dundale, and Austrian Winter Pea showed combined resistance on stem and leaf. A few genotypes identified with resistance against two major pathogens of the complex will be of particular significance to breeding programs. These findings explain why field pea varieties arising from breeding programs in Australia fail to display the level or consistency of resistance required against black spot and why there needs to be a wider focus than D. pinodes in breeding programs.


Author(s):  
M. D. Vaudin ◽  
J. P. Cline

The study of preferred crystallographic orientation (texture) in ceramics is assuming greater importance as their anisotropic crystal properties are being used to advantage in an increasing number of applications. The quantification of texture by a reliable and rapid method is required. Analysis of backscattered electron Kikuchi patterns (BEKPs) can be used to provide the crystallographic orientation of as many grains as time and resources allow. The technique is relatively slow, particularly for noncubic materials, but the data are more accurate than any comparable technique when a sufficient number of grains are analyzed. Thus, BEKP is well-suited as a verification method for data obtained in faster ways, such as x-ray or neutron diffraction. We have compared texture data obtained using BEKP, x-ray diffraction and neutron diffraction. Alumina specimens displaying differing levels of axisymmetric (0001) texture normal to the specimen surface were investigated.BEKP patterns were obtained from about a hundred grains selected at random in each specimen.


Sign in / Sign up

Export Citation Format

Share Document