Pressure Field Evolution on Rotor Blades at High Advance Ratio

Author(s):  
Nandeesh Hiremath ◽  
Dhwanil Shukla ◽  
Narayanan Komerath
Author(s):  
Krzysztof Kosowski ◽  
Marian Piwowarski

The experimental investigations into the pressure field in the shroud clearance were performed on a one-stage air model turbine of impulse type. Measurements of pressure distribution were carried out for different rotor eccentricities, different values of axial gap and of rotor-stator misalignment, different rotor speeds and different turbine load. The experimental investigations proved that: a) the pressure in the blade tip clearance is not stationary but it pulsates, b) the effect of nozzle trailing edge can be observed in the blade shroud clearance, c) for a given turbine output, the rotor-stator eccentricity and rotor-stator misalignment appear the most important parameters influencing the pressure distribution in the shroud clearance. Aiming to investigate the pressure pulsation transmission through the leakage flow in the blade shroud clearances, pulsations of different amplitudes and frequencies were excited in the turbine inlet duct and corresponding changes of pressure were measured along the shroud width, followed by appropriate harmonic analysis. The investigations were performed for forced pulsations with frequencies ranging from 1Hz to 8 Hz. In all the examined cases, the frequency of pressure pulsations remained unchanged, while the amplitude of the pulsation decreased gradually along the tip clearance. The frequency of these pressure pulsations in the tip clearance was equal to the frequency of the pressure pulsation at the turbine stage inlet and to the frequency of pressure pulsation at the turbine flow passage’s exit.


2014 ◽  
Vol 118 (1201) ◽  
pp. 297-313 ◽  
Author(s):  
J. de Montaudouin ◽  
N. Reveles ◽  
M. J. Smith

Abstract The aerodynamic and aeroelastic behaviour of a rotor become more complex as advance ratios increase to achieve high-speed forward fight. As the rotor blades encounter large regions of cross and reverse flows during each revolution, strong variations in the local Mach regime are encountered, inducing complex elastic blade deformations. In addition, the wake system may remain in the vicinity of the rotor, adding complexity to the blade loading. The aeroelastic behaviour of a model rotor with advance ratios ranging from 0·5 to 2·0 has been evaluated with aerodynamics provided via a computational fluid dynamics (CFD) method. Significant radial blade-vortex interaction can occur at a high advance ratio; the advance ratio at which this occurs is dependent on the rotor configuration. This condition is accompanied by high vibratory loads, peak negative torsion, and peak torsion and in-plane loads. The high vibratory loading increases the sensitivity of the trim model, so that at some high advance ratios the vibratory loads must be filtered to achieve a trimmed state.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Narmin Baagherzadeh Hushmandi ◽  
Jens E. Fridh ◽  
Torsten H. Fransson

A numerical and experimental study of partial admission in a low reaction two-stage axial air test turbine is performed in this paper. In order to model one part load configuration, corresponding to zero flow in one of the admission arcs, the inlet was blocked at one segmental arc, at the leading edge of the first stage guide vanes. Due to the unsymmetrical geometry, the full annulus of the turbine was modeled numerically. The computational domain contained the shroud and disk cavities. The full admission turbine configuration was also modeled for reference comparisons. Computed unsteady forces of the first stage rotor blades showed cyclic change both in magnitude and direction while moving around the circumference. Unsteady forces of first stage rotor blades were plotted in the frequency domain using Fourier analysis. The largest amplitudes caused by partial admission were at first and second multiples of rotational frequency due to the existence of single blockage and change in the force direction. Unsteady forces of rotating blades in a partial admission turbine could cause unexpected failures in operation; therefore, knowledge about the frequency content of the unsteady force vector and the related amplitudes is vital to the design process of partial admission turbine blades. The pressure plots showed that the nonuniformity in the static pressure field decreases considerably downstream of the second stage’s stator row, while the nonuniformity in the dynamic pressure field is still large. The numerical results between the first stage’s stator and rotor rows showed that the leakage flow leaves the blade path down into the disk cavity in the admitted sector and re-enters downstream of the blocked channel. This process compensates for the sudden pressure drop downstream of the blockage but reduces the momentum of the main flow.


1971 ◽  
Vol 93 (1) ◽  
pp. 63-68 ◽  
Author(s):  
M. G. Philpot

The buzz-saw noise made by a two-stage transonic research compressor has been investigated experimentally over a range of tip relative Mach numbers up to 1.56. The results show that the phenomenon is due to the propagation at supersonic relative tip speeds of the steady rotating pressure field associated with the first-stage rotor blades. The flow entering the tip section of the rotor has been analyzed theoretically and the circumferential pressure fluctuations computed, with good agreement with near-field measurements. The analysis leads to a clearer understanding of the dependence of the noise on inlet Mach number and three-dimensional effects and indicates the types of rotor irregularity which will most influence the harmonic content.


Author(s):  
Vrishank Raghav ◽  
Nandeesh Hiremath ◽  
Narayanan Komerath

Stereoscopic Particle Image Velocimetry data from a 2-bladed rigid NACA0013 rotor undergoing retreating blade dynamic stall in a low-speed wind tunnel, are analyzed to understand the phenomenon of 3-dimensional reattachment at the end of the dynamic stall cycle. Continuing from prior studies on the inception and progression of 3-D rotating dynamic stall for this test case, phase-resolved, ensemble-averaged results are presented for two values of rotor advance ratio at two spanwise stations along the blade. The results show the nominal reattachment getting delayed in rotor azimuth with higher advance ratio. At low advance ratio reattachment starts at the leading-edge and progresses towards the trailing-edge with a vortex shedding transporting excess vorticity sheds from the leading-edge and convects away, with the flow reattaching behind it. At higher advance ratio, the vortical structure shrinks in size while the flow close to the trailing-edge appears to reattach. Spanwise vorticity transport appears to be the mechanism. The difference could be attributed to the lower chordwise velocity of the blade at higher advance ratio, bringing in a rotation effect.


Author(s):  
J. C. Garci´a ◽  
J. Kubiak ◽  
F. Sierra ◽  
G. Urquiza ◽  
J. A. Rodri´guez

In a steam turbine stage there is an interaction between blades and the flow field. The blades are subjected to the forces caused by the flow field, but also the flow field is affected by the blades and its movement. The nozzle wakes cause uneven pressure field downstream and produce alternating forces on blades which lead to blade vibrations. Some of the vibrations originated in this way may damage the blades and affect the turbine performance. The results of numerical computations about the forces acting on the blades as a result of the variations in the flow field in the axial clearance rotor-stator in the last stage of a 110 MW steam turbine are presented. The analysis is focused on discussing the pressure field because it is necessary for further computation of the useful life time. The flow field was resolved using computational fluids dynamics and the computed pressure field was integrated around the blades to get the forces acting on blades. These computed dynamical forces will be used in the blade useful life estimation and in the investigation to the failure causes of these blades. The Navier-Stokes equations are resolved in two and three dimensions using a commercial program based on finite-volume method. 2-D and 3-D geometry models were built to represent the dimensional aspects of the last stage of the turbine. Periodic boundary conditions were applied to both sides of a periodic segment of the 2-D and 3-D models with the purpose of reducing computational efforts. The computations were conducted in steady state and transient conditions. The results show that the force magnitude acting on blades has an harmonic pattern. Finally a Fourier analysis was used to determine the coefficients and frequency of a Fourier equation which can be used to calculate the alternating stresses on the blade in order to predict the useful life of the blades. Also, the pressure and velocity fields are shown between the diaphragm and rotor blades along the axial clearance.


2003 ◽  
Vol 125 (1) ◽  
pp. 33-39 ◽  
Author(s):  
R. J. Miller ◽  
R. W. Moss ◽  
R. W. Ainsworth ◽  
N. W. Harvey

The composition of the time-resolved surface pressure field around a high-pressure rotor blade caused by the presence of neighboring blade rows is investigated, with the individual effects of wake, shock and potential field interaction being determined. Two test geometries are considered: first, a high-pressure turbine stage coupled with a swan-necked diffuser exit duct; secondly, the same high-pressure stage but with a vane located in the downstream duct. Both tests were conducted at engine-representative Mach and Reynolds numbers, and experimental data was acquired using fast-response pressure transducers mounted on the mid-height streamline of the HP rotor blades. The results are compared to time-resolved computational predictions of the flowfield in order to aid interpretation of experimental results and to determine the accuracy with which the computation predicts blade interaction. The paper is split into two parts: the first investigating the effect of the upstream vane on the unsteady pressure field around the rotor (vane-rotor interaction), and the second investigating the effect of the downstream vane on the unsteady pressure field around the rotor (rotor-vane interaction). The paper shows that at typical design operating conditions shock interaction from the upstream blade row is an order of magnitude greater than wake interaction and that with the design vane-rotor inter-blade gap the presence of the rotor causes a periodic increase in the strength of the vane trailing edge shock. The presence of the potential field of the downstream vane is found to affect significantly the rotor pressure field downstream of the Mach one surface within each rotor passage.


2020 ◽  
Vol 65 (4) ◽  
pp. 1-14
Author(s):  
Xing Wang ◽  
Yong Su Jung ◽  
James Baeder ◽  
Inderjit Chopra

To expand the cruise speed of a compound helicopter, alleviating the compressibility effects on the advancing side with reduced rotor RPM is proved to be an effective design feature, which results in high advance ratio flight regime. To investigate the aerodynamic phenomena at high advance ratios and provide data for the validation of analytical tools, a series of wind tunnel tests were conducted progressively in the Glenn L. Martin Wind Tunnel with a 33.5-inch radius fourbladed articulated rotor. In a recent wind tunnel test, the rotor blades were instrumented with pressure sensors and strain gauges at 30% radius, and pressure data were acquired to calculate the sectional airloads by surface integration up to an advance ratio of 0.8. The experimental results of rotor performance, control angles, blade airloads, and structural loads were compared with the predictions of comprehensive analysis and computational fluid dynamics (CFD) analysis coupled with computational structural dynamics (CSD) structural model. The paper focuses on the data correlation between experimental pressure, airload, and structural load data and the CFD/CSD predicted results at various collective and shaft tilt angles. Overall, the data correlation was found satisfactory, and the study provided some insights into the aerodynamic mechanisms that affect the rotor airload and performance, in particular the mechanisms of backward shaft tilt, the effect of hub/shaft wake, and the formation of dynamic stall in the reverse flow region.


2019 ◽  
Vol 64 (4) ◽  
pp. 1-15
Author(s):  
Christopher Cameron ◽  
Jayant Sirohi ◽  
Joseph Schmaus ◽  
Inderjit Chopra

The results of hover and wind tunnel tests of a reduced-scale, closely spaced, rigid, coaxial counterrotating rotor system are presented, along with results from a comprehensive analysis. The system features two-bladed upper and lower rotors, 2.03 m in diameter, with uniform section, untwisted rotor blades. Measurements include upper and lower rotor steady and vibratory hub loads, as well as control angles and control loads. Blade tip clearance was measured using an optical sensor. The rotor system was tested in hover and at advance ratios between 0.21 and 0.53, at collective pitches ranging from 2° to 10° achieving blade loadings in excess of 0.10. At each forward flight operating condition, sweeps of lift offset up to 20% were performed, while selected test conditions were repeated at different rotor speeds and interrotor index angles. Hover tests showed that aerodynamic interaction between upper and lower rotors decreased individual rotor performance compared to isolated rotors and induced a four-per-revolution vibratory load corresponding to the blade passage frequency. In forward flight, the rotor effective lift-to-drag ratio was found to increase with increasing advance ratio and lift offset, resulting in a 30% improvement at 20% lift offset and 0.5 advance ratio. The lower coaxial rotor was found to operate at higher lift-to-drag ratio than the upper rotor, in contrast to the behavior in hover. Lift offset resulted in a decrease in blade tip clearance with a corresponding increase in rotor side force. Vibratory loads increased with advance ratio, with the largest loads in the two- and four-per-revolution harmonics. Lift offset, in conjunction with interrotor index angle, is shown to modify vibratory forces and moments transmitted to the fixed frame, increasing some force components while decreasing others.


Sign in / Sign up

Export Citation Format

Share Document