Experimental Investigation of the Compression Ignition Process of High Reactivity Gasoline Fuels and E10 Certification Gasoline using a High-Pressure Direct Injection Gasoline Injector

Author(s):  
Jiongxun Zhang ◽  
Meng Tang ◽  
William Atkinson ◽  
Henry Schmidt ◽  
Seong-Young Lee ◽  
...  
2021 ◽  
Vol 7 ◽  
Author(s):  
Khanh Duc Cung ◽  
Ahmed Abdul Moiz ◽  
Xiucheng Zhu ◽  
Seong-Young Lee

Advanced combustion systems that utilize different combustion modes and alternative fuels have significantly improved combustion performance and emissions compared to conventional diesel or spark-ignited combustions. As an alternative fuel, dimethyl ether (DME) has been receiving much attention as it runs effectively under low-temperature combustion (LTC) modes such as homogeneous charge compression ignition (HCCI) and reactivity control combustion ignition (RCCI). Under compression-ignition (CI), DME can be injected as liquid fuel into a hot chamber, resulting in a diesel-like spray/combustion characteristic. With its high fuel reactivity and unique chemical formula, DME ignites easily but produces almost smokeless combustion. In the current study, DME spray combustion under several different conditions of ambient temperature (Tamb = 750–1100 K), ambient density (ρamb = 14.8–30 kg/m3), oxygen concentration (O2 = 15–21%), and injection pressure (Pinj = 75–150 MPa) were studied. The results from both experiments (constant-volume combustion vessel) and numerical simulations were used to develop empirical correlations for ignition and lift-off length. Compared to diesel, the established correlation of DME shows a similar Arrhenius-type expression. Sensitivity studies show that Tamb and Pinj have a stronger effect on DME's ignition and combustion than other parameters. Finally, this study provides a simplified conceptual mechanism of DME reacting spray under high reactivity ambient (high Tamb, high O2) and LTC conditions. Finally, this paper discusses engine operating strategies using a non-conventional fuel such as DME with different reactivity and chemical properties.


2020 ◽  
Vol 34 (11) ◽  
pp. 14796-14813
Author(s):  
Jingrui Li ◽  
Xinlei Liu ◽  
Haifeng Liu ◽  
Ying Ye ◽  
Hu Wang ◽  
...  

Author(s):  
Adam B. Dempsey ◽  
Bishwadipa Das Adhikary ◽  
Sandeep Viswanathan ◽  
Rolf D. Reitz

The present study uses numerical simulations to explore the use of hydrated (wet) ethanol for reactivity controlled compression ignition (RCCI) operation in a heavy duty diesel engine. RCCI uses in-cylinder blending of a low reactivity fuel with a high reactivity fuel and has demonstrated significant fuel efficiency and emissions benefits using a variety of fuels, including gasoline and diesel. Combustion timing is controlled by the local blended fuel reactivity (i.e., octane number), and the combustion duration can be controlled by establishing optimized gradients in fuel reactivity in the combustion chamber. In the present study, the low reactivity fuel was hydrated ethanol while the higher reactivity fuel was diesel. First, the effect of water on ethanol/water/diesel mixtures in completely premixed HCCI combustion was investigated using GT-Power and single-zone CHEMKIN simulations. The results showed that the main impact of the water in the ethanol is to reduce the initial in-cylinder temperature due to vaporization cooling. Next, multi-dimensional engine modeling was performed using the KIVA code at engine loads from 5 to 17 bars IMEP at 1300 rev/min with various grades of hydrated ethanol and a fixed diesel fraction of the total fuel. The results show that hydrated ethanol can be used in RCCI combustion with gross indicated thermal efficiencies up to 55% and very low emissions. A 70/30 ethanol/water mixture (by mass) was found to yield the best results across the entire load range without the need for EGR.


2005 ◽  
Vol 128 (4) ◽  
pp. 921-927 ◽  
Author(s):  
Shrawan Kumar Singh ◽  
Avinash Kumar Agarwal ◽  
Dhananjay Kumar Srivastava ◽  
Mukesh Sharma

This experimental investigation was aimed to investigate the effect of exhaust gas recirculation (EGR) on wear of in-cylinder engine parts. EGR setup was prepared for a two-cylinder, air-cooled, constant-speed direct-injection compression-ignition engine. Test setup was run for 96hr under predetermined loading cycles in two phases; normally, operating condition (i.e., without EGR) and with a fixed EGR rate of 25%. Addition of metallic wear debris in the lubricating oil samples drawn after regular interval from both engine operating phases was investigated. Relatively higher concentrations of all wear metals were found in the lubricating oil of the EGR-operated engine, which indicates higher wear of various engine parts. Weight loss of piston rings used in both phases was compared to quantify the amount of wear of piston rings. To quantify the amount of cylinder wear surface roughness parameters of cylinder liners were measured at three positions (top dead center, mid-stroke, and bottom dead center) on thrust and anti-thrust side. A qualitative analysis was also carried out by taking surface profiles and Scanning Electron Micrographs at same locations.


2017 ◽  
Vol 19 (9) ◽  
pp. 907-926 ◽  
Author(s):  
Martin L Wissink ◽  
Scott J Curran ◽  
Greg Roberts ◽  
Mark PB Musculus ◽  
Christine Mounaïm-Rousselle

Reactivity-controlled compression ignition (RCCI) is a dual-fuel variant of low-temperature combustion that uses in-cylinder fuel stratification to control the rate of reactions occurring during combustion. Using fuels of varying reactivity (autoignition propensity), gradients of reactivity can be established within the charge, allowing for control over combustion phasing and duration for high efficiency while achieving low NOx and soot emissions. In practice, this is typically accomplished by premixing a low-reactivity fuel, such as gasoline, with early port or direct injection, and by direct injecting a high-reactivity fuel, such as diesel, at an intermediate timing before top dead center. Both the relative quantity and the timing of the injection(s) of high-reactivity fuel can be used to tailor the combustion process and thereby the efficiency and emissions under RCCI. While many combinations of high- and low-reactivity fuels have been successfully demonstrated to enable RCCI, there is a lack of fundamental understanding of what properties, chemical or physical, are most important or desirable for extending operation to both lower and higher loads and reducing emissions of unreacted fuel and CO. This is partly due to the fact that important variables such as temperature, equivalence ratio, and reactivity change simultaneously in both a local and a global sense with changes in the injection of the high-reactivity fuel. This study uses primary reference fuels iso-octane and n-heptane, which have similar physical properties but much different autoignition properties, to create both external and in-cylinder fuel blends that allow for the effects of reactivity stratification to be isolated and quantified. This study is part of a collaborative effort with researchers at Sandia National Laboratories who are investigating the same fuels and conditions of interest in an optical engine. This collaboration aims to improve our fundamental understanding of what fuel properties are required to further develop advanced combustion modes.


2020 ◽  
pp. 146808742097355
Author(s):  
Vincent Giuffrida ◽  
Michele Bardi ◽  
Mickael Matrat ◽  
Anthony Robert ◽  
Guillaume Pilla

This paper aims at taking into account the chemistry of O3 in a 3D CFD simulation of compression ignition engine with Diesel type combustion for low load operating points. The methodology developed in this work includes 0D homogeneous reactors simulations, 3D RANS simulations and validation regarding experimental results. The 0D simulations were needed to take into account O3 reactions during the compression stroke because of the high reactivity of O3 with NO and dissociation at high temperature. The values found in these simulations were used as an input in the 3D model to match the correct O3 concentration at fuel injection timing. The 3D simulations were performed using CONVERGETM with a RANS approach. Simulations reproduce the compression/expansion stroke after the intake valve closure to focus on the impact of O3 on the fuel auto ignition. The comparison between numerical and experimental results demonstrates that the proposed methodology is able to capture correctly the impact of O3 addition on ignition delay and on heat release. Moreover, the analysis of the data enables to better understand the fundamental processes driving O3 impact in a CI engine. In particular, using 0D simulations, the plateau effect observed experimentally when increasing O3 concentration is attributed to O3 thermal decomposition and reaction with NO during the compression stroke. Also, 3D CFD results showed that O3 impact is observed mainly during LTHR phase and does not affect the topology and the propagation of the flame inside the combustion chamber.


Sign in / Sign up

Export Citation Format

Share Document