Numerical Simulation of Labyrinth Oil and Gas Separator in Vehicle Engine

Author(s):  
Z. Xinjie

The working process of oil and gas separator is a very complex gas-liquid two-phase separation movement; it is difficult to obtain internal flow condition using analytical method. In this paper, with DPM, SIMPLE algorithm and random walk model, velocity distribution, pressure distribution, oil droplets motion trajectory and separation efficiency were analyzed by numerical simulation method. This analysis is helpful to understand flow law of gas-liquid two-phase fluid in oil and gas separator,and then optimize separator structure, short its development cycle, which has important application value in engineering.

2020 ◽  
Vol 145 ◽  
pp. 02068
Author(s):  
Lei Zhang ◽  
Junwei Wang ◽  
Guohua Li

The separation technology in the large-scale sand-dust environment ground simulation test system applicable to the environmental adaptability and reliability verification of aerospace electromechanical products is studied. The gas-solid two-phase numerical simulation method is adopted, and the possible cyclone separation, inertial separation methods are used to study the separation efficiency and regularity technology, which provides a basis for the separation design and test of the sand-dust environment simulation of large electromechanical products.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Zhengzhi Wang ◽  
Chunling Zhu

In view of the rotor icing problems, the influence of centrifugal force on rotor blade icing is investigated. A numerical simulation method of three-dimensional rotor blade icing is presented. Body-fitted grids around the rotor blade are generated using overlapping grid technology and rotor flow field characteristics are obtained by solving N-S equations. According to Eulerian two-phase flow, the droplet trajectories are calculated and droplet impingement characteristics are obtained. The mass and energy conservation equations of ice accretion model are established and a new calculation method of runback water mass based on shear stress and centrifugal force is proposed to simulate water flow and ice shape. The calculation results are compared with available experimental results in order to verify the correctness of the numerical simulation method. The influence of centrifugal force on rotor icing is calculated. The results show that the flow direction and distribution of liquid water on rotor surfaces change under the action of centrifugal force, which lead to the increasing of icing at the stagnation point and the decreasing of icing on both frozen limitations.


2021 ◽  
Vol 11 (21) ◽  
pp. 10496
Author(s):  
Yuntong Yang ◽  
Zhaoyu Jiang ◽  
Lianfu Han ◽  
Wancun Liu ◽  
Xingbin Liu ◽  
...  

As oil exploitation enters its middle and late stages, formation pressure drops, and crude oil degases. In production profile logging, the presence of the gas phase will affect the initial oil–water two-phase flowmeter’s flow measurement results. In order to eliminate gas-phase interference and reduce measurement costs, we designed a downhole gas–liquid separator (DGLS) suitable for low flow, high water holdup, and high gas holdup. We based it on the phase isolation method. Using a combination of numerical simulation and fluid dynamic measurement experiments, we studied DGLS separation efficiency separately in the two cases of gas–water two-phase flow and oil–gas–water three-phase flow. Comparative analysis of the numerical simulation calculation and dynamic test results showed that: the VOF model constructed based on k−ε the equation is nearly identical to the dynamic test, and can be used to analyze DGLS separation efficiency; the numerical simulation results of the gas–water two-phase flow show that when the total flow rate is below 20 m3/d, the separation efficiency surpasses 90%. The oil–gas–water three-phase’s numerical simulation results show that the oil phase influences separation efficiency. When the total flow rate is 20 m3/d–50 m3/d and gas holdup is low, the DGLS’s separation efficiency can exceed 90%. Our experimental study on fluid dynamics measurement shows that the DGLS’s applicable range is when the gas mass is 0 m3/d~15 m3/d, and the water holdup range is 50%~100%. The research presented in this article can provide a theoretical basis for the development and design of DGLSs.


2013 ◽  
Vol 734-737 ◽  
pp. 1488-1492
Author(s):  
Zhen Yu Liu ◽  
Li Hong Yao ◽  
Hu Zhen Wang ◽  
Cui Cui Ye

The fractures after artificial steering fracturing appear in shades of curved surface. Aiming at the problem of steering fracture, in the paper, numerical simulation method under the condition of three-dimensional two-phase flow is presented based on finite element method. In this method, of steering fracture was achieved by adopting surface elements fractures and tetrahedron elements to describe formation. By numerical simulation, the change rule of oil and water production performance of steering fractures can be calculated, and then the steering fracture parameters can be optimized before fracturing. A new method was supplied for the numerical simulation of artificial fractured well.


Author(s):  
Roman Ivanovitch Savonov

This work presents the simulation of the internal flow in a swirl atomizer. The geometry of the atomizer is calculated by analytical equations used in engineering. The numerical simulation of the two-phase flow is performed by using two equations k-ε turbulence model. The fluids are presented as two-fluid homogeneous model. The interface between two phases is calculated by free surface model. The distribution fields of the axial and tangential velocities, pressures and air core are obtained. The aim of this work is to compare the results obtained by numerical simulation with ones obtained analytically. Also, to study the internal fluids flow inside the atomizer.


2015 ◽  
Vol 750 ◽  
pp. 153-159
Author(s):  
Jie Dong ◽  
Xue Dong Chen ◽  
Bing Wang ◽  
Wei He Guan ◽  
Tie Cheng Yang ◽  
...  

The upper and lower courses of sea oil and gas exploitationare connected by submarine pipeline which is called life line project. Free span often occurs because of the unevenness and scour of seabed, and fatigue is one of the main failure modes.In this paper, with the finite element numerical simulation method, based on the harmonic response analysis, the research on the structural response of free span under the vibration induced by vortex was investigated, and the effect of the factors such as flow velocity, length of free span. According to the analysis results,the fatigue life of free span was evaluated.


2014 ◽  
Vol 884-885 ◽  
pp. 104-107
Author(s):  
Zhi Jun Li ◽  
Ji Qiang Li ◽  
Wen De Yan

For the water-sweeping gas reservoir, especially when the water-body is active, water invasion can play positive roles in maintaining formation pressure and keeping the gas well production. But when the water-cone break through and towards the well bottom, suffers from the influencing of gas-water two phase flows, permeability of gas phase decrease sharply and will have a serious impact on the production performance of the gas well. Moreover, the time when the water-cone breakthrough will directly affect the final recovery of the gas wells, therefore, the numerical simulation method is used to conduct the research on the key influencing factors of water-invasion performance for the gas wells with bottom-water, which is the basis of the mechanical model for the typical gas wells with bottom-water. It indicate that as followings: (1) the key influencing factors of water-invasion performance for the gas wells with bottom-water are those, such as the open degree of the gas beds, well gas production and the amount of Kv/Kh value; and (2) the barrier will be in charge of great significance on the water-controlling for the bottom water gas wells, and its radius is the key factor to affect water-invasion performance for the bottom water gas wells where the barriers exist nearby.


Author(s):  
Yun Whan Na ◽  
J. N. Chung

Forced convective flow boiling in a single microchannel with different channel heights was studied through a numerical simulation method to investigate bubble dynamics, two-phase flow patterns, and boiling heat transfer. The momentum and energy equations were solved using a finite volume (FV) numerical method, while the liquid–vapor interface of a bubble is captured using the volume of fluid (VOF) technique. The effects of different constant wall heat fluxes and different channel heights on the boiling mechanisms were investigated. The effects of liquid velocity on the bubble departure diameter were also analyzed. The predicted bubble shapes and distribution profiles together with two-phase flow patterns are also provided.


2012 ◽  
Vol 166-169 ◽  
pp. 1824-1829
Author(s):  
W.L. Wei ◽  
B. Lv ◽  
Y.L. Liu ◽  
X.F. Yang

Nested type Fixed-Cone Valve, numerical simulation, energy dissipating, turbulent flow Abstract: In this paper, In this paper, a new type of Fixed-Cone Valve was proposed by improving the conventional type Fixed-Cone Valve .The flow fields of the two kinds of Fixed-Cone Valves were studied by using numerical simulation method .The computed pressure fields and the velocity fields were analyzed ,which shows that under the same conditions ,and by using the nested Fixed-Cone valve, the pressure of the upstream pipe and the cone valve and the average velocity along the downstream pipeline are reduced ,but the rate of energy dissipation is increased.


Sign in / Sign up

Export Citation Format

Share Document