scholarly journals Spectroscopic properties, molecular structure, anticancer and antimicrobial evaluation of some new moxifloxacin metal complexes in the presence of 1,10-phenanthroline

2020 ◽  
Vol 34 (2) ◽  
pp. 295-312
Author(s):  
S. M. Abd El-Hamid ◽  
S. A. Sadeek ◽  
W. A. Zordok ◽  
N. G. Rashid

New series of Y(III), Zr(IV), Pd(II), La(III) and U(VI) complexes with moxifloxacin (MOX) and 1,10-phenanthroline (Phen) were synthesized and the chelation behaviours have been investigated. The complexes were characterized using elemental analysis, molar conductance, magnetic properties, thermal studies and various spectral techniques such as FT-IR, UV-Vis, 1H NMR and mass spectra. The kinetic and thermodynamic parameters (E*, ΔH*, ΔS* and ΔG*) were calculated using Coats-Redfern and Horowitz-Metzeger methods. The bond length and force constant, F(U=O), for the uranyl complex was calculated. The DFT calculations were carried out to understand the optimized molecular geometry for the compounds. The calculated data indicated that Pd(II) complex with smaller energy gap value (∆E = 0.136 au) is more reactive than all compounds and La(III) complex with greater energy gap (∆E = 0.192 au) is less reactive. All studied compounds are treated as soft (η = 0.068-0.096) except MOX treated as hard (η = 0.16). The HOMO of all complexes is localized on MOX (100%) without any density on the Phen (0%) except Pd(II) complex, the HOMO is localized on Phen (61%). The LUMO in U(VI) complex is localized mainly on the U(VI) ion (63%), and in the Y(III) complex is localized mainly on Phen (89%). The cytotoxic activities against MCF-7, HCT-116 and the antimicrobial activity were tested.                     KEY WORDS: Moxifloxacin, 1,10-Phenanthroline, Spectroscopy, Thermal analysis, DFT, Antitumor agents   Bull. Chem. Soc. Ethiop. 2020, 34(2), 295-312 DOI: https://dx.doi.org/10.4314/bcse.v34i2.8

1975 ◽  
Vol 30 (10) ◽  
pp. 1308-1310 ◽  
Author(s):  
N. N. Tyutyulkov ◽  
O. E. Polansky ◽  
J. Fabian

Abstract For infinite polyacenes the energy gap (ΔE∞) is given by ΔE = , where Δcorr is a factor determined by the electronic correlation and Δgeom is a molecular geometry dependent factor. We find in the selected case Δcorr>Δgeom .The energy gap values calculated with this formula are in good agreement with the values calculated from the spectroscopic data of polyacenes (0.8-0.9 eV).


2019 ◽  
Vol 1 (1) ◽  

The present study reports the two step synthesis of a novel oxazolone derivative, 4-((4,6-bis(4-((Z)-(5-oxo-2-phenyloxazol-4(5H)-ylidene) methyl)phenoxy)-1,3,5-triazin-2-yl) oxy) benzaldehyde (CBOZ (5)), containing two oxazolone ring substituted with central triazine nucleus in their structural framework. The structural and spectroscopic properties of synthesized CBOZ (5) were characterized by FTIR, 1HNMR, 13CNMR, and mass spectroscopic analysis. The UV-Vis absorption of CBOZ (5) showed a single absorption band at ~370 nm due to π-π* transition with the estimated energy gap of ~3.02 eV. Cyclic voltammetry analysis revealed that the synthesized CBOZ (5) obtained the HOMO and LUMO values of -5.87 eV and-2.85 eV, respectively. Density functional theory (DFT) studies were carried out to predict the electronic absorption spectra of CBOZ (5) and the obtained values were in excellent agreement with the experimental results.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Renyer A. Costa ◽  
Earle Silva A. Junior ◽  
Jaqueline de A. Bezerra ◽  
Josiana Moreira Mar ◽  
Emerson S. Lima ◽  
...  

4-Nerolidylcatechol (4NRC), a secondary metabolite described as a potent antioxidant that presents anti-inflammatory, antimalarial, analgesic, and cytotoxic properties, has been receiving prominence in the catechol class. In this work, a theoretical DFT study of the vibrational, structural, and quantum properties of 4-nerolidylcatechol (4NRC) using the B3LYP/6-311G (2d,p) level is presented. The theoretical molecular geometry data were compared with the X-ray data of a similar molecule in the associated literature and a conformational study is presented, with the aim of providing a good comprehension of the 4NRC structural arrangement and stability. Also, HOMO-LUMO energy gap and natural bond orbitals (NBOs) were performed and discussed. The calculated UV spectrum showed similarity to the experimentally obtained data, with transitions assigned. The comparative IR studies revealed that intermolecular hydrogen bonds that stabilize dimeric forms are plausible and also allowed the assignment of several characteristic vibrations. Molecular docking calculations with DNA topoisomerase I-DNA complex (TOPO-I), glyceraldehyde 3-phospate dehydrogenase (GAPDH), and Plasmodium falciparum lactate dehydrogenase (PfLDH) showed binding free energies of −6.3, −6.5, and −7.6 kcal/mol, respectively, which indicates that 4NRC is a good competitive inhibitor for these enzymes.


2017 ◽  
Vol 12 (5) ◽  
pp. 1934578X1701200 ◽  
Author(s):  
M. Teresa Agulló-Ortuño ◽  
Carmen E. Díaz ◽  
Azucena González-Coloma ◽  
Matías Reina

The aim of this research was to determine the cytotoxic action of sixteen structurally-related eremophilane-type sesquiterpenes, isolated from several species of Senecio, against a panel of cancer cell lines. The cytotoxic activities were evaluated by WST-1 test and the IC50 values calculated. The investigated compounds exerted dose-dependent cytotoxic actions against selected cancer cell lines and no-tumoral HS5 cell line. The comparative structure-activity relationships demonstrated the importance of C-1, C-6, and C-8 substituents in the molecule. Our results show that eremophilane-type sesquiterpenes may represent an important source of novel potential antitumor agents due to their pronounced cytotoxic actions towards malignant cells.


2008 ◽  
Vol 5 (3) ◽  
pp. 627-633 ◽  
Author(s):  
Suresh ◽  
Padaki Srinivas ◽  
T. Suresh ◽  
M. Revanasiddappa ◽  
Syed Khasim

Tin(IV) complexes of 7-substituted 6,7-benzo-1,5-dizepines have been synthesized in absolute alcoholic medium. Elemental analysis indicates that the complexes have 1:2 stoichiometry of the type L2SnCl4, TGA data support this conclusion. Molar conductance values in DMF at 10–3 M suggest that, these complexes are non-electrolytes. Infrared spectral data shows the involvement of C=N and NH groups in coordination with the metal ion. X-ray diffraction pattern of few representative complexes indicate that, these are having simple cubic crystal structure. The energy of activation and order of reaction are calculated using TGA data of the complexes. All these information support that Sn(IV) in these complexes exhibits coordination number eight.


2003 ◽  
Vol 75 (2-3) ◽  
pp. 187-194 ◽  
Author(s):  
P. G. Baraldi ◽  
M. A. Tabrizi ◽  
D. Preti ◽  
Francesca Fruttarolo ◽  
Barbara Avitabile ◽  
...  

Many natural and synthetic anticancer agents with the ability to interact with DNA have been discovered, but most have little sequence-specificity and often exhibit severe toxicity to normal tissues. Thus, there has been considerable interest in molecular biology and human medicine to find small molecules that can alkylate the DNA in a sequence-specific manner and modify the function of nucleic acids irreversibly. Analogs of naturally occurring antitumor agents, such as distamycin A, which bind in the minor groove of DNA, represent a new class of anticancer compounds currently under investigation. Distamycin A has driven researchers' attention not only for its biological activity, but also for its nonintercalative binding to the minor groove of double-stranded B-DNA, where it forms a strong reversible complex preferentially at the nucleotide sequences consisting of 4-5 adjacent adenine-thymine (AT) base pairs. The pyrrole-amide skeleton of distamycin A has been also used as DNA sequence-selective vehicles for the delivery of alkylating functions to DNA targets, leading to a sharp increase of its cytotoxicity, in comparison to that, very weak, of distamycin itself.In the last few years, several hybrid compounds, in which derivatives of naturally occurring antitumor agents, such as anthramycin or the alkylating unit of the antibiotic CC-1065, have been tethered to distamycin frames. The DNA alkylating and cytotoxic activities against several tumor cell lines are reported and discussed in terms of their structural differences in relation to both the number of N-methyl pyrrole rings and the type of alkylating unit tethered to the oligopeptidic frame.


2010 ◽  
Vol 8 (4) ◽  
pp. 852-860 ◽  
Author(s):  
Juliana Ivanova ◽  
Ivayla Pantcheva ◽  
Mariana Mitewa ◽  
Svetlana Simova ◽  
Heike Mayer-Figge ◽  
...  

AbstractThe single crystal X-ray structures and the spectroscopic properties of complexes of monensic acid (C36H62O11·H2O) with toxic metal ions of Cd(II) and Hg(II) are discussed. The cadmium(II) complex (1) is of composition [Cd(C36H61O11)2(H2O)2] and crystallizes in the monoclinic system (space group P2(1), Z = 2) with a = 12.4090(8), b = 24.7688(16), c = 14.4358(11) Å, β = 91.979(7)°. Two ligand monoanions are bound in a bidentate coordination mode to Cd(II) via the carboxylate and the primary hydroxyl oxygens occupying the equatorial plane of the complex. The axial positions of the inner coordination sphere of Cd(II) are filled by two water molecules additionally engaged in intramolecular hydrogen bonds. The Hg(II) complex (2), [Hg(C36H60O11)(H2O)], crystallizes in the orthorhombic system (space group P2(1)2(1)2(1), Z = 4) with a = 12.7316(2), b = 16.4379(3), c = 18.7184(4) Å. The monensic acid reacts with Hg(II) in a tetradentate coordination manner via both oxygen atoms of the carboxylate function and oxygens of two hydroxyl groups. The twofold negative charge of the ligand is achieved by deprotonation of carboxylic and secondary hydroxyl groups located at the opposite ends of the molecule. Hg(II) is surrounded by five oxygen atoms in a distorted square pyramidal molecular geometry.


2019 ◽  
Author(s):  
Liang Xu ◽  
Dekang Xu ◽  
Ziying Li ◽  
Yu Gao ◽  
Haijun Chen

Diosgenin (Di), a steroidal sapogenin derived from plants, has been shown to exert anti-cancer effects in preclinical studies. Using Di as a starting material, various Di derivatives were designed and synthesized, aiming to discover new steroid-based antitumor agents. In this work, we synthesized several Di derivatives and screened FZU-0021-194-P2 (P2), which showed more potent cytotoxic activities against human non-small-cell lung cancer A549 and PC9 cells. Considering that Di has a unique sterol structure similarly to cholesterol, P2 phytosomes (P2P) were prepared to further improve the water solubility of P2. P2P exhibited a particle size of 53.6 ± 0.3 nm with oval shape and a zeta potential of −4.0 ± 0.7 mV. P2P could inhibit the proliferation of lung cancer cells more efficiently than Di phytosomes with 72-h incubation time through the mechanism of inducing cell cycle arrest and apoptosis. The results indicated that P2P could be a promising anticancer formulation for non-small-cell lung cancer.


2017 ◽  
Vol 36 (2) ◽  
pp. 265
Author(s):  
Basak Kosar Kirca ◽  
Gonca Ozdemir Tarı ◽  
Cıgdem Albayrak Kastas ◽  
Mustafa Odabasoglu ◽  
Orhan Buyukgungor

The main purpose of this study is to characterize a new organic material, (E)-5-methoxy-2-[(3,4-dimethylphenylimino)methyl]phenol, which was synthesized and grown as a single crystal. The molecular structure and spectroscopic properties of the ortho-hydroxy Schiff base compound were determined by X-ray diffraction analysis, Fourier-transform infrared (FT-IR), ultraviolet-visible (UV-Vis) and nuclear magnetic resonance (NMR) spectroscopy techniques, experimentally and computationally with density functional theory (DFT) calculations. X-ray and UV-Vis studies show that the compound exists in an OH tautomeric form in the solid and solvent media. The gas phase geometry optimizations of two possible forms of the title compound, resulting from the prototropic tautomerism, were obtained using DFT calculations at the B3LYP/6-311G+(d,p) level of theory. A relaxed potential energy surface (PES) scan was performed based on the optimized geometry of the OH tautomeric form by varying the redundant internal coordinate, the O-H bond distance. According to the PES scan process, the molecular geometry is strongly affected by the intramolecular proton transfer. The calculated first hyperpolarizability indicates that the compound could be a good material for non-linear optical applications. 


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lamia A. Albedair

Abstract New five ciprofloxacin (CIP) complexes of dioxouranium(II), oxozirconium(II), zirconium(IV), oxovanadium(II) and vanadium(IV) in the proportion 1:2 have been prepared using CIP as a drug chelate with UO2(NO3)2. 6H2O, ZrOCl2. 8H2O, ZrCl4, VOSO4. xH2O and V2O5 respectively. The CIP complexes have been characterized based on the elemental analysis, molar conductance, magnetic, (FTIR & 1HNMR) spectral and thermal studies. The molar conductance studies of the synthesized complexes in DMSO solvent with concentration of 10–3 M indicate their non-electrolytic properties. At room temperature, the magnetic moment measurements revealed a diamagnetic behavior for all CIP prepared complexes. The different formulas of the new complexes can be represented as [UO2(CIP)2(NO3)2] (I), [VO(CIP)2(SO4)(H2O)] (II), [V2(O)(O2)2(CIP)2] (III), [Zr(O)(CIP)2(Cl)2] (IV), and [Zr(CIP)2(Cl)4] (V). The thermal analysis data of the complexes indicates the absence of coordinated water molecules except for vanadyl(II) complex (II). The CIP chelate is a uni-dentate ligand coordinated to the mentioned metal ion through terminal piperazinyl nitrogen. The transmission electron microscopy (TEM) investigation confirms the nano-structured form of the complexes.


Sign in / Sign up

Export Citation Format

Share Document