scholarly journals Physicochemical characteristics and green microalgae composition of selected rivers in Ogun State, Nigeria

2021 ◽  
Vol 23 (2) ◽  
pp. 105-113
Author(s):  
O. S. Shokunbi ◽  
A. A. Badaru ◽  
T. A. Adesalu

The river system is the most complex of the freshwater bodies in the world and is prone to pollution especially from anthropogenic activities and the quality of water, as partially determined by physicochemical properties, is very crucial for primary productivity in the aquatic environment. This study determined the physicochemical characteristics and green microalgae of water collected from Majopa, Ogunpa and Uren rivers in Ogun State, Nigeria. Surface water samples were collected from three different rivers using direct collection method into the labelled bottles for physicochemical characteristics determination, culturing and ecological studies. Water samples for ecological studies were fixed in 4% unbuffered formalin while sample for culturing were not fixed but growth stimulated using Bold Basal Medium (BBM) and Blue- Green Medium (BG-11). The physicochemical parameters varied widely with the profile of water sample from Ogunpa River being the most favourable for widest diversity of green microalgae of all three. The pH of the water samples were slightly acidic ranging between 6.3 and 6.5 for the rivers, while the lower dissolved oxygen (2.61-3.01 mg/L) recorded pointed to a stressed environment which probably accounted for lower number of microalgae taxa observed, especially in Majopa River. The ecological studies showed the presence of ten taxa from the division Chlorophyta with nine taxa from Ogunpa River and Scenedesmus sp. being dominant genus across the rivers. The microalgae diversity of the river water was Ogunpa River˃Uren River˃Majopa River. BBM supported growth of the microalgae much better. The physicochemical properties portrayed Majopa and Ogunpa River water as unfit for drinking, while that of Uren River is relatively fit for drinking. It is highly recommended that the microalgae reported therein be further characterised for various possible economic benefits. Keywords: Growth, Microalgae, Nutrient, Ogun State, River, WaterDepth, Geothermal Energy

2019 ◽  
Vol 12 ◽  
pp. 117862211987277 ◽  
Author(s):  
Joan Nyika ◽  
Ednah Onyari

Groundwater is the most reliable resource for consumptive uses worldwide, but it is vulnerable to anthropogenic pollution in this post-industrialization era. Pollution of the resource may result from anthropogenic activities; hence, analysing the effects of leachate on groundwater is imperative. This study assessed the spatial distribution of physicochemical parameters of groundwater in Roundhill landfill vicinity of South Africa and conducted their hydrogeochemical analysis. Water samples were collected from 3 boreholes in the landfill surroundings and analysed for selected physicochemical characteristics. Spatial distribution of these parameters showed dominant pollution by Mn2+, Fe2+, and [Formula: see text], which surpassed prescribed allowable limits of the country in most of the study area. Possibilities of simple dissolution and ion mixing were deduced from the Durov diagram. Magnesium carbonate, sodium chloride, and mixed faces of groundwater were dominant in boreholes 1 to 3, respectively. The dominance of Ca2+, Cl−, Mg2+, and [Formula: see text] ions in some boreholes suggested anthropogenic pollution. Landfill leachate was associated with groundwater pollution in the study area.


2020 ◽  
Vol 2 ◽  
pp. e5 ◽  
Author(s):  
Evelyn Ngozi Verla ◽  
Andrew Wirnkor Verla ◽  
Christian Ebere Enyoh

Water has been described as a universal solvent, and this is perhaps the strength behind its many uses. Despite this unique property, anthropogenic activities along its course and natural factors often determine the composition of water. In the current research, the portion of River Nworie having past Owerri town was sampled in the dry season 2017 to determine its ionic composition at predestinated points and to relate such properties to its physicochemical characteristics. Studies relating physicochemical properties and dissolved toxic ions in water could develop a body of knowledge that could enable detection and quantification of potential risk of ions such as heavy metals from natural water to aquatic ecosystem, animal and human health without actually involving aquatic organism, animal and human. Clean sterile plastic bottles were used for collecting surface water. A total of 30 sub-samples from five points at 300 m apart were sampled in the morning. Physicochemical properties were determined using standard methods and ionic composition of water was determined according methods of APHA. Results revealed that Ca2+ had a mean 23.60 ± 0.67 mg/l and was the highest while K+ with a mean 0.72 ± 0.30 was the least amongst major cations. Amongst the major anions Cl− had mean of 31.58 ± 4.47 mg/l while mean of PO43− was 1.42 ± 0.13 mg/l. The ionic balance calculate as % balance error showed high values for all sampling sites ranging from 30 to 39.42% indicating that there is massive input from anthropogenic activities. The computed relationships for selected heavy metals, cations and anions revealed that R2 values were ranging between  ± 0.012 to 1 indicating some form of relationship existing. The water pH weakly correlated with dissolved cations and anions while moderate with pH only, due to the pH level (5.2–6.2). The cations and anions were more influenced by the water temperature than the heavy metals. Therefore, high temperature ranges of 31–32.4 °C will favour more dissolution of cations and anions in natural water. Cations showed stronger relationship with EC while only heavy metals showed no relationship with DO (Dissolved oxygen). Dissolved oxygen relationship with cations and anions was in the order; K+ > Mg2+ > Ca2+ > Na+ while anions was SO42− > NO3− > Cl− > PO43−, respectively. Information here could be used to predict the effects of using this water for various purposes including water for agricultural purposes, in the management of ion polluted waters, and also to inform on the mitigation process to be taken.


Author(s):  
Tianma Yuan ◽  
Kiran Kumar Vadde ◽  
Jonathan D. Tonkin ◽  
Jianjun Wang ◽  
Jing Lu ◽  
...  

Urbanization is increasing worldwide and is happening at a rapid rate in China in line with economic development. Urbanization can lead to major changes in freshwater environments through multiple chemical and microbial contaminants. We assessed the impact of urbanization on physicochemical characteristics and microbial loading in canals in Suzhou, a city that has experienced rapid urbanization in recent decades. Nine sampling locations covering three urban intensity classes (high, medium and low) in Suzhou were selected for field studies and three locations in Huangshan (natural reserve) were included as pristine control locations. Water samples were collected for physicochemical, microbiological and molecular analyses. Compared to medium and low urbanization sites, there were statistically significant higher levels of nutrients and total and thermotolerant coliforms (or fecal coliforms) in highly urbanized locations. The effect of urbanization was also apparent in the abundances of human-associated fecal markers and bacterial pathogens in water samples from highly urbanized locations. These results correlated well with land use types and anthropogenic activities at the sampling sites. The overall results indicate that urbanization negatively impacts water quality, providing high levels of nutrients and a microbial load that includes fecal markers and pathogens.


Author(s):  
Melford C. Egbujor ◽  
Ogechi J. Ogbodo ◽  
Jacob A. David ◽  
Eramus O. Anieze ◽  
Ifeanyi S. Amasiatu ◽  
...  

The physicochemical properties and the concentrations of heavy metals of water samples collected from four different rivers of Nkanu east and west Local Government Areas of Enugu of state Nigeria were investigated because of the prevalent water borne diseases in these localities attributable to the drinking of contaminated water. The water samples were collected from different sites of Esu, Umuekwe, Umuobeagu and Atafu rivers and their physicochemical properties and heavy metal contents were measured. Sampling Stations were selected; samples were collected avoiding contamination from the selected sites in same season, from same depth. On site measurement of parameters was done with the same instruments. Rests of the parameters were measured in Laboratory. Lead (Pb) was present in Esu, Umuekwe, Umuobeagu and Atafu rivers at a concentration of 0.14, 0.03, 0.00 and 0.16 mg/L respectively; Zn was only detected in Esu and Umuobeagu at 0.07 and 0.01 mg/L respectively and cadmium (Cd) concentrations of 0.14, 0.14. 0.08 and 0.08 mg/L respectively. Iron was detected in only Umuekwe river having 0.17 mg/L and Atafu river having 0.21 mg/L while Ni was detected at 3.01, 4.20, 1.20 and 3.83 mg/L respectively. Only Atafu river had Cr at 0.01 mg/L, only Esu river had Co content at 0.05 mg/L, Mn content in Esu, Umuekwe, and Umuobeagu was found to be 0.01, 0.02 and 0.02 mg/L respectively with Atafu river having none. Hg concentration was found to be 0.57, 0.06, 0.42 and 0.82 mg/L for Esu, Umuekwe, Umuobeagu and Atafu rivers respectively. The concentrations of Pb and Cd were higher in all the four samples especially in Esu river as a result of its closeness to construction sites and refuse dump and the concentrations were above the acceptable limits of WHO standard of 0.010 and 0.005 mg/L respectively for drinking water while Hg, Fe, and Ni were found within the W.H.O limits of 0.001, 3.000 and 0.100 mg/L respectively. The rest were below the standard, thus confirming conclusively that the rivers are polluted with the presence of heavy metals.


Data in Brief ◽  
2018 ◽  
Vol 19 ◽  
pp. 2445-2451
Author(s):  
Oluwaseun J. Okunola ◽  
Deborah O. Oba ◽  
Solomon U. Oranusi ◽  
Hilary I. Okagbue

2017 ◽  
Vol 743 ◽  
pp. 326-330
Author(s):  
Mai Trong Ba ◽  
Dodarbek Sadriddinovich Azimov ◽  
Alexander Sergeevich Knyazev ◽  
Grigory Konstantinovich Ivakhnyuk

Water plays a crucial role in the growth and development of species on Earth. Changes in the physicochemical properties of water have a large effect on the human activities. Researchers have researched and evaluated effects of electric current frequency on the physicochemical properties of distilled water samples. The effect of electric fields on the physicochemical properties of water allows it to identify the optimal treatment regimes that promote the intensification of various processes taking place in an aqueous medium or in the presence of water.


2020 ◽  
Vol 4 (1) ◽  
pp. 9-13 ◽  
Author(s):  
Neny Kurniawati, Kerelius, Sunariyati ◽  
Luqman Hakim, Dyah Ayu Pramoda Wardani, Widya Krestina ◽  
Dwi Tyas Setiawan, Ferry Purwanto, Diah K. Fatmala

Abstrak – Penelitian ini bertujuan untuk mengkaji pengaruh waktu paparan gelombang ultrasonik terhadap pengurangan jumlah koloni bakteri coliform pada sampel air sungai Kahayan. Pengambilan sampel air sungai dilakukan dengan teknik Grab Sampling menggunakan alat Kemmerer Sampler. Sampel air yang didapatkan diberikan paparan gelombang ultrasonik secara langsung, tanpa merubah kondisi lingkungan awal. Waktu paparan divariasikan pada 1 jam, 2 jam, 3 jam, 4 jam, dan 5 jam dengan frekuensi 40 kHz untuk memperoleh data waktu optimum. Uji coliform dilakukan dengan metode MPN, dengan tahapan uji pendugaan, uji penegasan, dan perhitungan koloni. Hasil uji MPN 24 jam setelah paparan menunjukkan bahwa penggunaan ultrasonik sebagai antibateri dapat optimum ketika diberikan paparan dengan waktu 3 jam, dengan efisiensi  96%. Kata kunci: antibakteri, coliform, ultrasonik, water treatment, sungai Kahayan  Abstract – This study aims to examine the effect of ultrasonic wave exposure time on reducing the number of coliform bacterial colonies in the Kahayan river water samples. River water sampling is done using the Grab Sampling technique using the Kemmerer Sampler tool. The water samples obtained were given direct ultrasonic wave exposure, without changing the initial environmental conditions. The exposure time is varied in 1 hour, 2 hours, 3 hours, 4 hours and 5 hours with a frequency of 40 kHz to obtain optimum time data. Coliform test was carried out by the MPN method, with the stages of the estimation test, affirmation test, and colony calculation. The MPN test results 24 hours after exposure showed that the use of ultrasonic as an antibody can be optimum when given exposure with a time of 3 hours, with an efficiency of 96%.Keywords : antibakterial, coliform, ultrasonic, water treatment, Kahayan river


1986 ◽  
Vol 21 (3) ◽  
pp. 332-343 ◽  
Author(s):  
C.H. Chan ◽  
Y.L. Lau ◽  
B.G. Oliver

Abstract The concentration distribution of hexachlorobutadiene (HCBD), pentachloro-benzene (QCB), hexachlorobenzene (HCB) and octachlorostyrene (OCS) in water samples from transects across the upper and lower St. Clair River and the upper Detroit River were determined on four occasions in 1985. The data show a plume of these contaminants from the Sarnia industrial area. The fluxes and concentration profiles of the contaminants at Port Lambton have been modelled success fully using a simple transverse mixing model. A study on the chemical partitioning between the “dissolved” and “suspended sediment” phases shows that an important contaminant fraction is carried in the river by the suspended solids, particularly for lipophilie compounds such as HCB and OCS,


Sign in / Sign up

Export Citation Format

Share Document