Comparison of Bacterial Species Isolated from Ground Beef, Textured Soy Protein and Ground Beef Extended with Textured Soy Protein1,2

1978 ◽  
Vol 41 (12) ◽  
pp. 961-964 ◽  
Author(s):  
JAMES F. FOSTER ◽  
LINDA S. GUTHERTZ ◽  
RICHARD C. HUNDERFUND ◽  
JAMES L. FOWLER

A survey of the bacterial species of public health importance which could be isolated from ground beef (GB), textured soy protein (TSP) and ground beef extended with TSP (SGB) after 3 and 10 days of storage at 4 C was conducted. Escherichia coli was the most frequent gram-negative isolate from GB and SGB. Few gram-negative organisms were found in TSP. Clostridium perfringens was the most frequent gram-positive isolate from GB and SGB while Bacillus sp. was isolated most frequently from TSP. Salmonella enteriditis ser. worthington was isolated from GB and TSP. These products contained a wide variety of microorganisms, some of which might result in a food-associated infection or intoxication. However, if properly handled and cooked before consumption, these products should present few public health hazards.

2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Vicki Ann Luna ◽  
Kimmy Nguyen ◽  
Damian H. Gilling

The distribution of the virulent plasmid pBC210 of B. cereus that carries several B. anthracis genes and has been implicated in lethal anthrax-like pulmonary disease is unknown. We screened our collection of 103 B. cereus isolates and 256 soil samples using a quantitative PCR (qPCR) assay that targeted three open reading frames putatively unique to pBC210. When tested with DNA from 2 B. cereus strains carrying pBC210, and 64 Gram-positive and 55 Gram-negative bacterial species, the assay had 100% sensitivity and specificity. None of the DNA from the B. cereus isolates yielded positive amplicons but DNA extracted from five soils collected in Florida gave positive results for all three target sequences of pBC210. While screening confirms that pBC210 is uncommon in B. cereus, this study is the first to report that pBC210 is present in Florida soils. This study improves our knowledge of the distribution of pBC210 in soils and, of public health importance, the potential threat of B. cereus isolates carrying the toxin-carrying plasmid. We demonstrated that sequences of pBC210 can be found in a larger geographical area than previously thought and that finding more B. cereus carrying the virulent plasmid is a possibility in the future.


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 349
Author(s):  
Sien Ombelet ◽  
Alessandra Natale ◽  
Jean-Baptiste Ronat ◽  
Olivier Vandenberg ◽  
Liselotte Hardy ◽  
...  

Bacterial identification is challenging in low-resource settings (LRS). We evaluated the MicroScan identification panels (Beckman Coulter, Brea, CA, USA) as part of Médecins Sans Frontières’ Mini-lab Project. The MicroScan Dried Overnight Positive ID Type 3 (PID3) panels for Gram-positive organisms and Dried Overnight Negative ID Type 2 (NID2) panels for Gram-negative organisms were assessed with 367 clinical isolates from LRS. Robustness was studied by inoculating Gram-negative species on the Gram-positive panel and vice versa. The ease of use of the panels and readability of the instructions for use (IFU) were evaluated. Of species represented in the MicroScan database, 94.6% (185/195) of Gram-negative and 85.9% (110/128) of Gram-positive isolates were correctly identified up to species level. Of species not represented in the database (e.g., Streptococcus suis and Bacillus spp.), 53.1% out of 49 isolates were incorrectly identified as non-related bacterial species. Testing of Gram-positive isolates on Gram-negative panels and vice versa (n = 144) resulted in incorrect identifications for 38.2% of tested isolates. The readability level of the IFU was considered too high for LRS. Inoculation of the panels was favorably evaluated, whereas the visual reading of the panels was considered error-prone. In conclusion, the accuracy of the MicroScan identification panels was excellent for Gram-negative species and good for Gram-positive species. Improvements in stability, robustness, and ease of use have been identified to assure adaptation to LRS constraints.


1956 ◽  
Vol 104 (3) ◽  
pp. 383-409 ◽  
Author(s):  
Maurice Landy ◽  
Louis Pillemer

It has been shown that injection of lipopolysaccharides, derived from a variety of Gram-negative bacterial species, evokes in mice a rapidly developing rise in resistance to infection with Gram-negative pathogens. This is accompanied by an elevation in properdin titer, at times to levels 2 to 3 times the normal. The rate, magnitude, and duration of these responses are dependent on many factors, the most important of which are the quantity and timing of the lipopolysaccharide administered. The increased resistance to infection evoked in mice by lipopolysaccharides was effective against infections produced by endotoxin-bearing organisms-bacterial species highly susceptible in vitro to the bactericidal action of the properdin system. Properdin titers of mice prior to infection provide an incomplete picture of the subsequent reaction of the host to the infective agent. Following infection with Gram-negative organisms, properdin levels accurately reflect the bacteriologic course and outcome of the infection. Thus, in control animals, properdin titers progressively declined and the animals died, while in mice appropriately treated with lipopolysaccharide, properdin levels were either maintained in the normal range or increased, depending on the dose and time of administration of lipopolysaccharide; this was always accompanied by successful management of the infection. The complex nature of the alterations produced in the host by lipopolysaccharides is stressed. It is pointed out that the increase in the ability of the host to cope with Gram-negative infections may be the result of stimulation of other defense mechanisms, in addition to the properdin system.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0256556
Author(s):  
Abera Abdeta ◽  
Adane Bitew ◽  
Surafel Fentaw ◽  
Estifanos Tsige ◽  
Dawit Assefa ◽  
...  

Background Multidrug resistant, extremely drug-resistant, pan-drug resistant, carbapenem-resistant, and carbapenemase-producing gram-negative bacteria are becoming more common in health care settings and are posing a growing threat to public health. Objective The study was aimed to detect and phenotypically characterize carbapenem no- susceptible gram-negative bacilli at the Ethiopian Public Health Institute. Materials and methods A prospective cross-sectional study was conducted from June 30, 2019, to May 30, 2020, at the national reference laboratory of the Ethiopian Public Health Institute. Clinical samples were collected, inoculated, and incubated for each sample in accordance with standard protocol. Antimicrobial susceptibility testing was conducted using Kirby-Bauer disk diffusion method. Identification was done using the traditional biochemical method. Multidrug-resistant and extensively drug-resistant isolates were classified using a standardized definition established by the European Centre for Disease Prevention and Control and the United States Centers for Disease Prevention and Control. Gram-negative organisms with reduced susceptibility to carbapenem antibiotics were considered candidate carbapenemase producers and subjected to modified carbapenem inactivation and simplified carbapenem inactivation methods. Meropenem with EDTA was used to differentiate metallo-β-lactamase (MBL) from serine carbapenemase. Meropenem (MRP)/meropenem + phenylboronic acid (MBO) were used to differentiate Klebsiella pneumoniae carbapenemase (KPC) from other serine carbapenemase producing gram-negative organisms. Results A total of 1,337 clinical specimens were analyzed, of which 429 gram-negative bacterial isolates were recovered. Out of 429 isolates, 319, 74, and 36 were Enterobacterales, Acinetobacter species, and Pseudomonas aeruginosa respectively. In our study, the prevalence of multidrug-resistant, extensively drug-resistant, carbapenemase-producing, and carbapenem nonsusceptible gram-negative bacilli were 45.2%, 7.7%, 5.4%, and 15.4% respectively. Out of 429 isolates, 66 demonstrated reduced susceptibility to the antibiotics meropenem and imipenem. These isolates were tested for carbapenemase production of which 34.8% (23/66) were carbapenemase producers. Out of 23 carbapenemase positive gram-negative bacteria, ten (10) and thirteen (13) were metallo-beta-lactamase and serine carbapenemase respectively. Three of 13 serine carbapenemase positive organisms were Klebsiella pneumoniae carbapenemase. Conclusion This study revealed an alarming level of antimicrobial resistance (AMR), with a high prevalence of multidrug-resistant (MDR) and extremely drug-resistant, carbapenemase-producing gram-negative bacteria, particularly among intensive care unit patients at the health facility level. These findings point to a scenario in which clinical management of infected patients becomes increasingly difficult and necessitates the use of “last-resort” antimicrobials likely exacerbating the magnitude of the global AMR crisis. This mandates robust AMR monitoring and an infection prevention and control program.


1974 ◽  
Vol 19 (3) ◽  
pp. 119-124 ◽  
Author(s):  
T. A. McAllister ◽  
J. Givan ◽  
A. Black ◽  
M. J. Turner ◽  
M. M. Kerr ◽  
...  

Bacteriological examinations were performed on 1103 infants to determine the ages at which the newborn are colonized at different sites by bacteria, and with which organisms. On the day of birth, specimens for culture included aspirated gastric contents, and swabs from nose, throat, groin and rectum; on Day 3 the umbilical cord clamp with a section of the cord, swabs from nose, throat, groin and rectum; on days 5 and 1, and weekly thereafter, swabs from the same 4 sites. These examinations included identification of the individual bacterial species. The mass of information so obtained was analysed by computer. The high level of bacterial colonization by day 3 was striking and, indeed, large numbers of potential pathogens were grown from infants within one hour of birth. Staphylococcus aureus was found only in very small numbers of infants, e.g. only 2.6 per cent of infants' umbilical cords on day 3, and 4 per cent of infants' noses on day 7. If the levels of colonization reflect the risks of infection, Pseudomonas aeruginosa ranks close to Staph. aureus in the newborn nursery of the modern maternity hospital. Forty two different species of bacteria were isolated from these infants of which 24 were potential pathogens and of the latter, gram-negative organisms greatly outnumbered the gram-positive. This high incidence of gram-negative colonization in a large series of hospitalized neonates may be a normal phenomenon but it suggests that the risk of infection is today greater with gram-negative than with gram-positive bacteria. The figures for carriage of pathogenic staphylococci in the present investigation contrast markedly with the figures reported by many workers between 1950 and 1960.


mSphere ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Goutam Chowdhury ◽  
Thandavarayan Ramamurthy ◽  
Amit Ghosh ◽  
Shanta Dutta ◽  
Eizo Takahashi ◽  
...  

ABSTRACT The azithromycin resistance conferred by phosphotransferase is encoded in the gene mph(A). This gene has been discovered in and reported for many bacterial species. We examined the prevalence of azithromycin resistance in Vibrio fluvialis (AR-VF) isolated during 2014 to 2015 from the hospitalized acute diarrheal patients in Kolkata, India. Most of the V. fluvialis isolates are identified as the sole pathogen (54%). The prevalence of AR-VF was higher in 2015 (19 [68%]) than in 2014 (9 [32%]). Among AR-VF isolates, the azithromycin MICs ranged from 4 to >256 mg/liter. Twenty-eight of the 48 (58%) V. fluvialis isolates harbored the gene mph(A) and phenotypically resistant to azithromycin. All the AR-VF isolates remained susceptible to doxycycline. In addition to azithromycin, other antimicrobial resistance-encoding genes of AR-VF were also characterized. All the AR-VF isolates were positive for class 1 integron, and most of them (17/28) carried the dfrA1 gene cassettes. Only one isolate was positive for the ereA gene, which encodes resistance to erythomycin. The majority of the isolates were resistant to β-lactam antibiotics (blaOXA-1 [96%], blaOXA-7 [93%], and blaTEM-9 [68%]) and aminoglycoside actetyltransferase, conferring resistance to ciprofloxacin-modifying enzyme [aac(6′)Ib-cr] (96%). Analyses by pulsed-field gel electrophoresis (PFGE) showed that the AR-VF isolates belonged to different genetic lineages. This is the first study to report azithromycin resistance and the presence of the mph(A) gene in V. fluvialis isolates. Circulation of AR-VF isolates with high azithromycin MICs is worrisome, since it may limit the treatment options for diarrheal infections. IMPORTANCE The progressive rise in antibiotic resistance among enteric pathogens in developing countries is becoming a big concern. India is one of the largest consumers of antibiotics, and their use is not well regulated. V. fluvialis is increasingly recognized as an emerging diarrheal pathogen of public health importance. Here we report the emergence of azithromycin resistance in V. fluvialis isolates from diarrheal patients in Kolkata, India. Azithromycin has been widely used in the treatment of various infections, both in children and in adults. Resistance to azithromycin is encoded in the gene mph(A). Emerging azithromycin resistance in V. fluvialis is a major public health challenge, and future studies should be focused on identifying ways to prevent the dissemination of this antibiotic resistance gene.


2021 ◽  
Author(s):  
Sudhakar P Awandkar ◽  
Mahesh B Kulkarni

Abstract Mastitis, most often udder infection of dairy animals attracted concerns due to heavy economic loss to dairy industry and public health. This study was conducted to determine the cultivable bacterial species associated with bovine clinical mastitis and their resistance patterns to different antimicrobials. The milk samples from 272 quarters of cows suffering from clinical mastitis were investigated. A total of 110 bacterial isolates belonging to 14 different genera were isolated and identified. Aminoglycosides and Quinolones were found to be most effective antibiotics. We demonstrated Extended Spectrum β Lactamases (ESBL), Cephalosporins, Tetracyclines, Vancomycin and Chloramphenicol resistant Gram-positive and Gram-negative bacteria along with Vancomycin Resistant Enterococci (VRE), Multiple Drug Resistant Gram-Negative Rods (MDR-GNR), MDR-Pseudomonas (MDR-P) and MDR Acinetobacter (MDR-A). The ESBLs and cephalosporins resistant S. aureus isolates showed resistance to Vancomycin. Wide spread of resistance among Streptococcus uberis against ESBLs and Cephalosporins, widely used antibiotics in bovine mastitis, was documented. Variable MDR patterns were recorded for every species. MDR transfer from non-pathogens to emerging foodborne and established mastitis pathogens could be potential problem to dairy industry as well as public health.


Author(s):  
Mohamed H. El-Sayed

Antimicrobial resistance is a subject of great concern in the public health. The prevalence of antimicrobial resistance among food pathogens has increased during recent decades. Studying the incidence and antibiotic resistance pattern of bacterial species isolated from fish and vended street fruits.   Eleven fish swabs and thirteen sliced fruit samples were collected and prepared for isolation of bacterial species through inoculation onto selective and non-selective nutrient media. The grown colonies were purified through subculturing on nutrient agar plates then identified by morphological and biochemical methods. The obtained pure cultures were then kept on nutrient agar slants. Testing antibiotic resistance of the isolated bacterial strains was studied by Kirby-Bauer disk diffusion method on Mueller Hinton agar using ten antibiotics belonging to different classes. The resultant inhibition zone was interpreted according to Clinical Laboratory Standard Institute. Twenty-eight bacterial cultures were isolated from the collected food samples. The conventional identification using morphological and biochemical methods of these cultures revealed presence of three Gram positive species; Staphylococcus aureus, Streptococcus sp. and Bacillus subtilis in addition to four Gram negative; Escherichia coli, Brucella sp., Enterococcus faecalis and Proteus mirabilis. The incidence of the obtained bacterial species was arranged as 29.16% for both S. aureus and E. faecalis followed by Brucella sp. 16.66%; B. subtilis & E. coli 12.5% then Streptococcus sp. and P. mirabilis with an incidence of 8.33% each. Testing antibiotic resistance pattern of seven bacterial species against ten antibiotics showed that, among three Gram positive bacterial species, only one (33.33%) strain S. aureus exhibited resistance to six antibiotics; amoxicillin, erythromycin, ciprofloxacin, ceftriaxone, fluconazole and dicloxacillin. Among four Gram negative bacterial strains only one (25.0%) strain Enterococcus faecalis exhibited resistance to eight antibiotics; amoxicillin, streptomycin, chloramphenicol, cotrimoxazole, ciprofloxacin, ofloxacin, sparfloxacin and cloxacillin. Occurrence of multi-drug resistant bacteria in fish and vended street fruits poses not only risk of disease to the foods but public health hazard to food handlers and consumers in general. Also the result of this study recommended augmentin and cephazolin as good choice antibiotics for treatment of infection in the study area. 


Author(s):  
Ruaridh Buchanan ◽  
David Wareham

Although antibiotic resistance has come to the fore in the media and clinical practice relatively recently, it is by no means a new issue; Alexander Fleming discussed the risks of penicillin resistance more than sixty years ago, but even he was behind the times. Bacteria have been competing with each other for millions of years, producing compounds which kill or inhibit other species—it is not surprising that bacteria have evolved defence mechanisms. Current major concerns are the rise of pan-drug resistant gram-negative organisms and the spread of multi-drug resistant TB. Bacterial cells turn over rapidly—this rate of reproduction leads to many errors in DNA replication. Many of these mutations are deleterious to the organism, but others confer new properties, such as changing the structure of an enzyme. The application of selection pressure in the form of antimicrobial therapy leads to the survival of mutants that have randomly acquired resistance mechanisms. There are two useful ways to categorize resistance mechanisms: by how bacterial cells acquire them and by the physical mechanism of action. The types of acquisition have important infection control ramifications. Resistance can be subdivided into three separate categories: ● Intrinsic resistance— mechanisms hard coded into all members of a bacterial species at the chromosomal level. If an organism’s antibiogram suggests susceptibility to an agent to which it should be intrinsically resistant, further work should be done to check that the identification is correct. Examples include gram-negative bacteria being resistant to glycopeptides due to the outer cell membrane, anaerobes being resistant to aminoglycosides due to lack of an uptake mechanism, and amoxicillin resistance in Klebsiella due to beta-lactamase production. ● Mutational resistance—resistance that arises randomly due to DNA replication errors in conjunction with selection pressure applied by antimicrobial agents. This is the basis of the majority of the mechanisms detailed in this chapter. ● Transferrable resistance— mutational resistance that is passed horizontally from the bacterium in which it arose to another cell, possibly of a different species entirely. This happens through either transposons (DNA that incorporates into the bacterial chromosome) or plasmids (rings of DNA that replicate independent of the main chromosome).


mBio ◽  
2021 ◽  
Author(s):  
Mark T. Anderson ◽  
Aric N. Brown ◽  
Ali Pirani ◽  
Sara N. Smith ◽  
Amanda L. Photenhauer ◽  
...  

Bloodstream infections are a global public health problem. The goal of this work was to determine the replication characteristics of Gram-negative bacterial species in the host following bloodstream infection.


Sign in / Sign up

Export Citation Format

Share Document