A Comparison of Hand Washing Techniques To Remove Escherichia coli and Caliciviruses under Natural or Artificial Fingernails

2003 ◽  
Vol 66 (12) ◽  
pp. 2296-2301 ◽  
Author(s):  
CHIA-MIN LIN ◽  
FONE-MAO WU ◽  
HOI-KYUNG KIM ◽  
MICHAEL P. DOYLE ◽  
BARRY S. MICHAELS ◽  
...  

Compared with other parts of the hand, the area beneath fingernails harbors the most microorganisms and is most difficult to clean. Artificial fingernails, which are usually long and polished, reportedly harbor higher microbial populations than natural nails. Hence, the efficacy of different hand washing methods for removing microbes from natural and artificial fingernails was evaluated. Strains of nonpathogenic Escherichia coli JM109 and feline calicivirus (FCV) strain F9 were used as bacterial and viral indicators, respectively. Volunteers with artificial or natural nails were artificially contaminated with ground beef containing E. coli JM109 or artificial feces containing FCV. Volunteers washed their hands with tap water, regular liquid soap, antibacterial liquid soap, alcohol-based hand sanitizer gel, regular liquid soap followed by alcohol gel, or regular liquid soap plus a nailbrush. The greatest reduction of inoculated microbial populations was obtained by washing with liquid soap plus a nailbrush, and the least reduction was obtained by rubbing hands with alcohol gel. Lower but not significantly different (P > 0.05) reductions of E. coli and FCV counts were obtained from beneath artificial than from natural fingernails. However, significantly (P ≤ 0.05) higher E. coli and FCV counts were recovered from hands with artificial nails than from natural nails before and after hand washing. In addition, microbial cell numbers were correlated with fingernail length, with greater numbers beneath fingernails with longer nails. These results indicate that best practices for fingernail sanitation of food handlers are to maintain short fingernails and scrub fingernails with soap and a nailbrush when washing hands.

2003 ◽  
Vol 66 (3) ◽  
pp. 493-496 ◽  
Author(s):  
C. O. GILL ◽  
J. C. McGINNIS

The hands of workers in the carcass-breaking facility at a beef packing plant were sampled by rinsing. Total aerobes, coliforms, and Escherichia coli were enumerated for each sample. The numbers of bacteria recovered from duplicate groups of 25 hand samples collected before and after hands were washed with an antibacterial gel, rinsed in a disinfectant solution, washed with the gel and rinsed with the disinfectant, or washed in the disinfectant for 20 s were similar for samples collected before work began after breaks. The numbers of bacteria recovered from samples collected before and after hands were washed with the antibacterial gel and rinsed in the disinfectant solution were similar for samples collected after work as well. However, the mean numbers of aerobes recovered from the four groups of hand samples after work were all >6.5 log CFU per hand, while 9 of the 10 corresponding values for groups of hand samples collected before work were <6.5 log CFU per hand; the total numbers of coliforms recovered from three groups of hand samples collected after work were >4 log CFU/25 hands, while 9 of the corresponding values for groups of hand samples collected before work were <4 log CFU/25 hands. The total numbers of E. coli recovered from all groups of hand samples collected after work were >3.5 log CFU/25 hands, while 9 of the corresponding values for groups of hand samples collected before work were <3 log CFU/25 hands. Thus, although washing and/or rinsing apparently did not reduce the numbers of bacteria on hands, fewer bacteria were recovered from hands before than after work.


2004 ◽  
Vol 67 (9) ◽  
pp. 1829-1833 ◽  
Author(s):  
J. A. CASON ◽  
M. E. BERRANG ◽  
R. J. BUHR ◽  
N. A. COX

Paired carcass halves were used to test whether fecal contamination of skin during processing of broiler chickens can be detected by increased bacterial counts in samples taken before and after immersion chilling. In each of three trials, six freshly defeathered and eviscerated carcasses were cut in half, and a rectangle (3 by 5 cm) was marked with dots of ink on the breast skin of each half. One half of each pair was chosen randomly, and 0.1 g of freshly collected feces was spread over the rectangle with a spatula. After 10 min, both halves were sprayed with tap water for 10 to 15 s until feces could no longer be seen in the marked area. Both halves were sampled with a 1-min carcass rinse and were then put in a paddle chiller with other eviscerated carcasses for 45 min to simulate industrial immersion chilling. Immediately after chilling, each carcass half was subjected to another 1-min rinse, after which the skin within the rectangle was aseptically removed from the carcass halves and stomached. Rinses of fecally contaminated halves had significantly higher Enterobacteriaceae immediately before chilling, but there were no differences in coliform and Escherichia coli counts. After chilling, there were no differences in Enterobacteriaceae, coliform, and E. coli counts in rinse or skin samples from the paired carcass halves. Correlations were generally poor between counts in rinse and skin samples but were significant between prechill and postchill rinses for both control and fecally contaminated halves. Correlations were also significant between counts in rinses of control and contaminated halves of the same carcass after chilling. Bacterial counts in postchill carcass rinses did not indicate that fecal contamination occurred before chilling.


2009 ◽  
Vol 72 (5) ◽  
pp. 1099-1101 ◽  
Author(s):  
NORMAN J. STERN ◽  
J. ERIC LINE

The maintenance and survival of target pathogens during transport from the field collection site to the analytical laboratory is essential for obtaining accurate and reliable data. This study was conducted to compare the efficacy of sterile tap water (SW), buffered peptone water (BPW), and universal preenrichment broth (UP) for maintaining populations of Campylobacter spp., Salmonella, and Escherichia coli for 24 h under simulated transport conditions. Freshly processed broiler carcasses (n = 100) were rinsed in SW. The rinses were divided, and components were added to create equal volumes of rinse samples consisting of SW, BPW, and UP. The rinses were analyzed for the target organisms immediately and again after 24 h of simulated chilled transport conditions. The only meaningful difference between the different transport media was found for UP, which recovered fewer E. coli than did either SW or BPW. These findings support the conclusion that either SW or BPW should be used as a broiler carcass rinse and/or transport medium to accurately depict the levels or presence of these three target bacteria as a whole. Because potable water differs in pH and hardness across the United States, a follow-up study was conducted to investigate whether water hardness or pH within the ranges normally found across the United States would affect Campylobacter recovery from carcass rinses. No significant differences were detected.


2004 ◽  
Vol 70 (11) ◽  
pp. 6420-6427 ◽  
Author(s):  
Steven C. Ingham ◽  
Jill A. Losinski ◽  
Matthew P. Andrews ◽  
Jane E. Breuer ◽  
Jeffry R. Breuer ◽  
...  

ABSTRACT In this study we tested the validity of the National Organic Program (NOP) requirement for a ≥120-day interval between application of noncomposted manure and harvesting of vegetables grown in manure-fertilized soil. Noncomposted bovine manure was applied to 9.3-m2 plots at three Wisconsin sites (loamy sand, silt loam, and silty clay loam) prior to spring and summer planting of carrots, radishes, and lettuce. Soil and washed (30 s under running tap water) vegetables were analyzed for indigenous Escherichia coli. Within 90 days, the level of E. coli in manure-fertilized soil generally decreased by about 3 log CFU/g from initial levels of 4.2 to 4.4 log CFU/g. Low levels of E. coli generally persisted in manure-fertilized soil for more than 100 days and were detected in enriched soil from all three sites 132 to 168 days after manure application. For carrots and lettuce, at least one enrichment-negative sample was obtained ≤100 days after manure application for 63 and 88% of the treatments, respectively. The current ≥120-day limit provided an even greater likelihood of not detecting E. coli on carrots (≥1 enrichment-negative result for 100% of the treatments). The rapid maturation of radishes prevented conclusive evaluation of a 100- or 120-day application-to-harvest interval. The absolute absence of E. coli from vegetables harvested from manure-fertilized Wisconsin soils may not be ensured solely by adherence to the NOP ≥120-day limit. Unless pathogens are far better at colonizing vegetables than indigenous E. coli strains are, it appears that the risk of contamination for vegetables grown in Wisconsin soils would be elevated only slightly by reducing the NOP requirement to ≥100 days.


2004 ◽  
Vol 67 (7) ◽  
pp. 1377-1383 ◽  
Author(s):  
S. M. L. STEVENSON ◽  
S. R. COOK ◽  
S. J. BACH ◽  
T. A. McALLISTER

To evaluate the potential of using electrolyzed oxidizing (EO) water for controlling Escherichia coli O157:H7 in water for livestock, the effects of water source, electrolyte concentration, dilution, storage conditions, and bacterial or fecal load on the oxidative reduction potential (ORP) and bactericidal activity of EO water were investigated. Anode and combined (7:3 anode:cathode, vol/vol) EO waters reduced the pH and increased the ORP of deionized water, whereas cathode EO water increased pH and lowered ORP. Minimum concentrations (vol/vol) of anode and combined EO waters required to kill 104 CFU/ml planktonic suspensions of E. coli O157:H7 strain H4420 were 0.5 and 2.0%, respectively. Cathode EO water did not inhibit H4420 at concentrations up to 16% (vol/vol). Higher concentrations of anode or combined EO water were required to elevate the ORP of irrigation or chlorinated tap water compared with that of deionized water. Addition of feces to EO water products (0.5% anode or 2.0% combined, vol/vol) significantly reduced (P < 0.001) their ORP values to <700 mV in all water types. A relationship between ORP and bactericidal activity of EO water was observed. The dilute EO waters retained the capacity to eliminate a 104 CFU/ml inoculation of E. coli O157:H7 H4420 for at least 70 h regardless of exposure to UV light or storage temperature (4 versus 24°C). At 95 h and beyond, UV exposure reduced ORP, significantly more so (P < 0.05) in open than in closed containers. Bactericidal activity of EO products (anode or combined) was lost in samples in which ORP value had fallen to ≤848 mV. When stored in the dark, the diluted EO waters retained an ORP of >848 mV and bactericidal efficacy for at least 125 h; with refrigeration (4°C), these conditions were retained for at least 180 h. Results suggest that EO water may be an effective means by which to control E. coli O157:H7 in livestock water with low organic matter content.


2016 ◽  
Vol 79 (1) ◽  
pp. 66-74 ◽  
Author(s):  
P. B. SHRIDHAR ◽  
L. W. NOLL ◽  
X. SHI ◽  
B. AN ◽  
N. CERNICCHIARO ◽  
...  

ABSTRACT Shiga toxin–producing Escherichia coli (STEC) serogroups O26, O45, O103, O111, O121, and O145, called non-O157 STEC, are important foodborne pathogens. Cattle, a major reservoir, harbor the organisms in the hindgut and shed them in the feces. Although limited data exist on fecal shedding, concentrations of non-O157 STEC in feces have not been reported. The objectives of our study were (i) to develop and validate two multiplex quantitative PCR (mqPCR) assays, targeting O-antigen genes of O26, O103, and O111 (mqPCR-1) and O45, O121, and O145 (mqPCR-2); (ii) to utilize the two assays, together with a previously developed four-plex qPCR assay (mqPCR-3) targeting the O157 antigen and three virulence genes (stx1, stx2, and eae), to quantify seven serogroups and three virulence genes in cattle feces; and (iii) to compare the three mqPCR assays to a 10-plex conventional PCR (cPCR) targeting seven serogroups and three virulence genes and culture methods to detect seven E. coli serogroups in cattle feces. The two mqPCR assays (1 and 2) were shown to be specific to the target genes, and the detection limits were 4 and 2 log CFU/g of pure culture–spiked fecal samples, before and after enrichment, respectively. A total of 576 fecal samples collected from a feedlot were enriched in E. coli broth and were subjected to quantification (before enrichment) and detection (after enrichment). Of the 576 fecal samples subjected, before enrichment, to three mqPCR assays for quantification, 175 (30.4%) were quantifiable (≥4 log CFU/g) for at least one of the seven serogroups, with O157 being the most common serogroup. The three mqPCR assays detected higher proportions of postenriched fecal samples (P < 0.01) as positive for one or more serogroups compared with cPCR and culture methods. This is the first study to assess the applicability of qPCR assays to detect and quantify six non-O157 serogroups in cattle feces and to generate data on fecal concentration of the six serogroups.


2019 ◽  
Vol 24 (25) ◽  
Author(s):  
Ayla Hesp ◽  
Kees Veldman ◽  
Jeanet van der Goot ◽  
Dik Mevius ◽  
Gerdien van Schaik

Background Monitoring of antimicrobial resistance (AMR) in animals is essential for public health surveillance. To enhance interpretation of monitoring data, evaluation and optimisation of AMR trend analysis is needed. Aims To quantify and evaluate trends in AMR in commensal Escherichia coli, using data from the Dutch national AMR monitoring programme in livestock (1998–2016). Methods Faecal samples were collected at slaughter from broilers, pigs and veal calves. Minimum inhibitory concentration values were obtained by broth microdilution for E. coli for 15 antimicrobials of eight antimicrobial classes. A Poisson regression model was applied to resistant isolate counts, with explanatory variables representing time before and after 2009 (reference year); for veal calves, sampling changed from 2012 represented by an extra explanatory variable. Results Resistant counts increased significantly from 1998-2009 in broilers and pigs, except for tetracyclines and sulfamethoxazole in broilers and chloramphenicol and aminoglycosides in pigs. Since 2009, resistant counts decreased for all antimicrobials in broilers and for all but the phenicols in pigs. In veal calves, for most antimicrobials no significant decrease in resistant counts could be determined for 2009–16, except for sulfamethoxazole and nalidixic acid. Within animal species, antimicrobial-specific trends were similar. Conclusions Using Dutch monitoring data from 1998-2016, this study quantified AMR trends in broilers and slaughter pigs and showed significant trend changes in the reference year 2009. We showed that monitoring in commensal E. coli is useful to quantify trends and detect trend changes in AMR. This model is applicable to similar data from other European countries.


2006 ◽  
Vol 69 (1) ◽  
pp. 6-11 ◽  
Author(s):  
L. SCOTT ◽  
P. McGEE ◽  
J. J. SHERIDAN ◽  
B. EARLEY ◽  
N. LEONARD

Escherichia coli O157:H7 is an important foodborne pathogen that can cause hemorrhagic colitis and hemolytic uremic syndrome. Cattle feces and fecally contaminated water are important in the transmission of this organism on the farm. In this study, the survival of E. coli O157:H7 in feces and water was compared following passage through the animal digestive tract or preparation in the laboratory. Feces were collected from steers before and after oral inoculation with a marked strain of E. coli O157:H7. Fecal samples collected before cattle inoculation were subsequently inoculated with the marked strain of E. coli O157:H7 prepared in the laboratory. Subsamples were taken from both animal and laboratory-inoculated feces to inoculate 5-liter volumes of water. E. coli O157:H7 in feces survived up to 97 days, and survival was not affected by the method used to prepare the inoculating strain. E. coli O157:H7 survived up to 109 days in water, and the bacteria collected from inoculated cattle were detected up to 10 weeks longer than the laboratory-prepared culture. This study suggests that pathogen survival in low-nutrient conditions may be enhanced by passage through the gastrointestinal tract.


2009 ◽  
Vol 72 (7) ◽  
pp. 1560-1568 ◽  
Author(s):  
HELGA J. DOERING ◽  
MARK A. HARRISON ◽  
RUTH A. MORROW ◽  
WILLIAM C. HURST ◽  
WILLIAM L. KERR

Lettuce and spinach inoculated with Escherichia coli O157:H7 were processed and handled in ways that might occur in commercial situations, including variations in holding times before and after product cooling, transportation conditions and temperatures, wash treatments, and product storage temperatures and times. Populations of background microflora and E. coli O157:H7 were enumerated after each step in the system. Data analysis was done to predict response variables with a combination of independent categorical variables. Field temperature, time before cooling, and wash treatment significantly affected E. coli O157:H7 populations on both products. The lowest populations of E. coli O157:H7 were encountered when precool time was minimal, lettuce was washed with chlorine, and storage temperature was 4°C. For lettuce, field and transportation temperature were not important once the storage period started, whereas after 2 days E. coli O157:H7 populations on packaged baby spinach were not affected by field temperature. On chopped iceberg lettuce and whole leaf spinach that was packaged and stored at 4°C, E. coli O157:H7 contamination could still be detected after typical handling practices, although populations decreased from initial levels in many cases by at least 1.5 log units. In abusive cases, where populations increased, the product quality quickly deteriorated. Although E. coli O157:H7 levels decreased on products handled and stored under recommended conditions, survivors persisted. This study highlights practices that may or may not affect the populations of E. coli O157:H7 on the final product.


2019 ◽  
Vol 70 (2) ◽  
pp. 210-218 ◽  
Author(s):  
Anu Kantele ◽  
Tinja Lääveri ◽  
Sointu Mero ◽  
Inka M K Häkkinen ◽  
Juha Kirveskari ◽  
...  

AbstractBackgroundOne-third of the 100 million travelers to the tropics annually acquire extended-spectrum β-lactamase (ESBL)–producing Enterobacteriaceae (ESBL-PE), with undefined clinical consequences.MethodsSymptoms suggesting Enterobacteriaceae infections were recorded prospectively among 430 Finnish travelers, 90 (21%) of whom acquired ESBL-PE abroad. ESBL-PE isolates underwent polymerase chain reaction–based detection of diarrheagenic Escherichia coli (DEC) pathotypes (enteroaggregative E. coli [EAEC], enteropathogenic E. coli [EPEC], enterotoxigenic E. coli [ETEC], enteroinvasive E. coli, and Shiga toxin–producing E. coli), and extraintestinal pathogenic/uropathogenic E. coli (ExPEC/UPEC). Laboratory-confirmed ESBL-PE infections were surveyed 5 years before and after travel.ResultsAmong the 90 ESBL-PE carriers, manifestations of Enterobacteriaceae infection included travelers’ diarrhea (TD) (75/90 subjects) and urinary tract infection (UTI) (3/90). The carriers had 96 ESBL-producing E. coli isolates, 51% exhibiting a molecular pathotype: 13 (14%) were DEC (10 EAEC, 2 EPEC, 1 ETEC) (12 associated with TD) and 39 (41%) ExPEC/UPEC (none associated with UTI). Of ESBL-PE, 3 (3%) were ExPEC/UPEC-EAEC hybrids (2 associated with diarrhea, none with UTI). Potential ESBL-PE infections were detected in 15 of 90 subjects (17%). The 10-year medical record survey identified 4 laboratory-confirmed ESBL-PE infections among the 430 travelers, all in subjects who screened ESBL-PE negative after returning home from their index journeys but had traveled abroad before their infection episodes.ConclusionsHalf of all travel-acquired ESBL-producing E. coli strains qualified molecularly as pathogens. Extraintestinal and uropathogenic pathotypes outnumbered enteric pathotypes (41% vs 14%), yet the latter correlated more closely with symptomatic infection (0% vs 92%). Despite more ESBL-PE strains qualifying as ExPEC/UPEC than DEC, travel-acquired ESBL-PE are more often associated with TD than UTI.


Sign in / Sign up

Export Citation Format

Share Document