Molecular Screening, Isolation, and Characterization of Enterohemorrhagic Escherichia coli O157:H7 from Retail Shrimp

2010 ◽  
Vol 73 (1) ◽  
pp. 97-103 ◽  
Author(s):  
ALAGARSAMY SURENDRARAJ ◽  
NIRMALA THAMPURAN ◽  
TOMS C. JOSEPH

Foodborne outbreaks attributed to the contamination of foods with enterohemorrhagic Escherichia coli (EHEC) O157:H7 are a growing global concern. Fish and shrimp samples obtained from different retail fish markets in Cochin, India, were screened by direct PCR assays targeting three important virulence markers of EHEC, the intimin protein (eaeA gene), enterohemolysin (hlyA gene), and Shiga toxin (stx gene). One shrimp (Fenneropenaeus indicus) sample was positive for all these virulence markers, and seven typical E. coli O157:H7 isolates were recovered from the marker-positive shrimp sample. This is the first report of recovery of typical E. coli O157:H7 from fish or shellfish in India. All the typical EHEC isolates had a characteristic reaction in eosin methylene blue agar and belonged to IMViC (indole, methyl red, Voges Proskauer, Simmons citrate reactions) biotype I. These isolates also were negative for sorbitol and methylumbelliferyl-β -glucuronide and exhibited β-hemolytic activity. One isolate showed self-agglutination for E. coli O157 antisera and produced a false-positive reaction with CHROMagar O157. These typical EHEC isolates belonged to a restricted biotype group and had a very low multiple antibiotic resistance index. Isolation of E. coli O157:H7 in fish and shellfish indicates that strict adherence to hygienic handling methods and proper cooking or processing is needed before consumption of these products.

2010 ◽  
Vol 76 (16) ◽  
pp. 5510-5519 ◽  
Author(s):  
Lutz Geue ◽  
Susann Schares ◽  
Birgit Mintel ◽  
Franz J. Conraths ◽  
Elke Müller ◽  
...  

ABSTRACT Since enterohemorrhagic Escherichia coli (EHEC) isolates of serogroup O156 have been obtained from human diarrhea patients and asymptomatic carriers, we studied cattle as a potential reservoir for these bacteria. E. coli isolates serotyped by agglutination as O156:H25/H−/Hnt strains (n = 32) were isolated from three cattle farms during a period of 21 months and characterized by rapid microarray-based genotyping. The serotyping by agglutination of the O156 isolates was not confirmed in some cases by the results of DNA-based serotyping as only 25 of the 32 isolates were conclusively identified as O156:H25. In the multilocus sequence typing (MLST) analysis, all EHEC O156:H25 isolates were characterized as sequence type 300 (ST300) and ST688, which differ by a single-nucleotide exchange in the purA gene. Oligonucleotide microarrays allow simultaneous detection of a wider range of EHEC-associated and other E. coli virulence markers than other methods. All O156:H25 isolates showed a wide spectrum of virulence factors typical for EHEC. The stx 1 genes combined with the EHEC hlyA (hlyA EHEC) gene, the eae gene of the ζ subtype, as well as numerous other virulence markers were present in all EHEC O156:H25 strains. The behavior of eight different cluster groups, including four that were EHEC O156:H25, was monitored in space and time. Variations in the O156 cluster groups were detected. The results of the cluster analysis suggest that some O156:H25 strains had the genetic potential for a long persistence in the host and on the farm, while other strains did not. As judged by their pattern of virulence markers, E. coli O156:H25 isolates of bovine origin may represent a considerable risk for human infection. Our results showed that the miniaturized E. coli oligonucleotide arrays are an excellent tool for the rapid detection of a large number of virulence markers.


1998 ◽  
Vol 66 (6) ◽  
pp. 2553-2561 ◽  
Author(s):  
Patrick Boerlin ◽  
Shu Chen ◽  
John K. Colbourne ◽  
Roger Johnson ◽  
Stephanie De Grandis ◽  
...  

ABSTRACT This study assessed the diversity of the enterohemorrhagicEscherichia coli (EHEC) hemolysin gene (ehxA) in a variety of Shiga toxin-producing E. coli (STEC) serotypes and the relationship between ehxA types and virulence markers on the locus for enterocyte effacement (LEE). Restriction fragment length polymorphism of the ehxA gene and flanking sequences and of the E. coli attaching and effacing (eae) gene was determined for 79 EHEC hemolysin-positive STEC isolates of 37 serotypes. Two main groups of EHEC hemolysin sequences and associated plasmids, which corresponded to the eae-positive and the eae-negative isolates, were delineated. Comparisons of the ehxA gene sequences of representative isolates of each group showed that this gene and the rest of the EHEC hemolysin operon are highly conserved. Digestion of anehxA PCR product with the restriction endonucleaseTaqI showed a unique restriction pattern foreae-negative isolates and another one for isolates of serotypes O157:H7 and O157:NM. A conserved fragment of 5.6 kb with four potential open reading frames was identified on the EHEC hemolysin plasmid of eae-positive STEC. Phylogenetic analysis of a subset of 27 STEC isolates, one enteropathogenic E. coliisolate, and a K-12 reference isolate showed thateae-positive STEC isolates all belong to a single evolutionary lineage and that the EHEC hemolysin plasmid and theehxA gene evolved within this lineage without recent horizontal transfer. However, the eae gene and the LEE appear to have been transferred horizontally within this STEC lineage on several occasions. The reasons for the lack of transfer or maintenance of the LEE in other STEC lineages are not clear and require further study.


1990 ◽  
Vol 53 (11) ◽  
pp. 944-947 ◽  
Author(s):  
AMY B. RONNER ◽  
DEAN O. CLIVER

Enterohemorrhagic Escherichia coli serogroup 0157:H7 is harbored by cattle and causes bloody diarrhea and hemolytic uremic syndrome in persons who consume raw milk and under-cooked beef. Samples of manure from Wisconsin dairy farms were tested for the presence of E. coli 0157:H7 as well as for bacteriophages (coliphages) specific for this microorganism. No E. coli 0157:H7 bacteria were isolated from any of the 21 manure samples taken from 12 farms. Nineteen of 20 samples yielded “nonspecific” coliphages that produced plaques both on 0157:H7 and on other E. coli. Only one sample yielded a coliphage that plaqued on 14 strains of 0157:H7 but not on other E. coli. This coliphage, designated “AR1,” is tailed and ca. 187 nm long; it produces distinct plaques ca. 0.5 mm in diameter; single-step growth experiments showed a latent period of 20 to 25 min and a burst size of 34 progeny plaque-forming units (PFU). AR1 was also tested against other enterobacteria, including: Escherichia hermanii, four species of Salmonella, four types of Yersinia enterocolitica, and a strain of Shigella dysenteriae which produces an enteric toxin similar to that produced by E. coli 0157:H7. Of these enteric bacteria, only S. dysenteriae yielded plaques, which suggests that there is a relationship between production of this toxin and susceptibility to coliphage AR1. Coliphage AR1 may be useful in detecting or identifying E. coli 0157:H7 and possibly other bacteria producing the same toxin, from human stool, animal manure, and food samples.


2021 ◽  
Vol 9 (2) ◽  
pp. 326
Author(s):  
Frederick Adzitey ◽  
Nurul Huda ◽  
Amir Husni Mohd Shariff

Meat is an important food source that can provide a significant amount of protein for human development. The occurrence of bacteria that are resistant to antimicrobials in meat poses a public health risk. This study evaluated the occurrence and antimicrobial resistance of E. coli (Escherichia coli) isolated from raw meats, ready-to-eat (RTE) meats and their related samples in Ghana. E. coli was isolated using the USA-FDA Bacteriological Analytical Manual and phenotypic antimicrobial susceptibility test was performed by the disk diffusion method. Of the 200 examined meats and their related samples, 38% were positive for E. coli. Notably, E. coli was highest in raw beef (80%) and lowest in RTE pork (0%). The 45 E. coli isolates were resistant ≥ 50% to amoxicillin, trimethoprim and tetracycline. They were susceptible to azithromycin (87.1%), chloramphenicol (81.3%), imipenem (74.8%), gentamicin (72.0%) and ciprofloxacin (69.5%). A relatively high intermediate resistance of 33.0% was observed for ceftriaxone. E. coli from raw meats, RTE meats, hands of meat sellers and working tools showed some differences and similarities in their phenotypic antimicrobial resistance patterns. Half (51.1%) of the E. coli isolates exhibited multidrug resistance. The E. coli isolates showed twenty-two different resistant patterns, with a multiple antibiotic resistance index of 0.0 to 0.7. The resistant pattern amoxicillin (A, n = 6 isolates) and amoxicillin-trimethoprim (A-TM, n = 6 isolates) were the most common. This study documents that raw meats, RTE meats and their related samples in Ghana are potential sources of antimicrobial-resistant E. coli and pose a risk for the transfer of resistant bacteria to the food chain, environment and humans.


2012 ◽  
Vol 79 (1) ◽  
pp. 411-414 ◽  
Author(s):  
Afonso G. Abreu ◽  
Vanessa Bueris ◽  
Tatiane M. Porangaba ◽  
Marcelo P. Sircili ◽  
Fernando Navarro-Garcia ◽  
...  

ABSTRACTAutotransporter (AT) protein-encoding genes of diarrheagenicEscherichia coli(DEC) pathotypes (cah,eatA,ehaABCDJ,espC,espI,espP,pet,pic,sat, andtibA) were detected in typical and atypical enteropathogenicE. coli(EPEC) in frequencies between 0.8% and 39.3%. Although these ATs have been described in particular DEC pathotypes, their presence in EPEC indicates that they should not be considered specific virulence markers.


2012 ◽  
Vol 75 (9) ◽  
pp. 1691-1697 ◽  
Author(s):  
BURTON W. BLAIS ◽  
MARTINE GAUTHIER ◽  
MYLÈNE DESCHÊNES ◽  
GEORGE HUSZCZYNSKI

A cloth-based hybridization array system (CHAS) was developed for the identification of foodborne colony isolates of seven priority enterohemorrhagic Escherichia coli (EHEC-7) serogroups targeted by U.S. food inspection programs. Gene sequences associated with intimin; Shiga-like toxins 1 and 2; and the antigenic markers O26, O45, O103, O111, O121, O145, and O157 were amplified in a multiplex PCR incorporating a digoxigenin label, and detected by hybridization of the PCR products with an array of specific oligonucleotide probes immobilized on a polyester cloth support, with subsequent immunoenzymatic assay of the captured amplicons. The EHEC-7 CHAS exhibited 100% inclusivity and 100% exclusivity characteristics with respect to detection of the various markers among 89 different E. coli strains, with various marker gene profiles and 15 different strains of non–E. coli bacteria.


2001 ◽  
Vol 183 (17) ◽  
pp. 5187-5197 ◽  
Author(s):  
Vanessa Sperandio ◽  
Alfredo G. Torres ◽  
Jorge A. Girón ◽  
James B. Kaper

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is responsible for outbreaks of bloody diarrhea and hemolytic-uremic syndrome in many countries. EHEC virulence mechanisms include the production of Shiga toxins (Stx) and formation of attaching and effacing (AE) lesions on intestinal epithelial cells. We recently reported that genes involved in the formation of the AE lesion were regulated by quorum sensing through autoinducer-2, which is synthesized by the product of the luxS gene. In this study we hybridized an E. coli gene array with cDNA synthesized from RNA that was extracted from EHEC strain 86-24 and its isogenicluxS mutant. We observed that 404 genes were regulated by luxS at least fivefold, which comprises approximately 10% of the array genes; 235 of these genes were up-regulated and 169 were down-regulated in the wild-type strain compared to in theluxS mutant. Down-regulated genes included several involved in cell division, as well as ribosomal and tRNA genes. Consistent with this pattern of gene expression, theluxS mutant grows faster than the wild-type strain (generation times of 37.5 and 60 min, respectively, in Dulbecco modified Eagle medium). Up-regulated genes included several involved in the expression and assembly of flagella, motility, and chemotaxis. Using operon::lacZ fusions to class I, II, and III flagellar genes, we were able to confirm this transcriptional regulation. We also observed fewer flagella by Western blotting and electron microscopy and decreased motility halos in semisolid agar in the luxS mutant. The average swimming speeds for the wild-type strain and the luxS mutant are 12.5 and 6.6 μm/s, respectively. We also observed an increase in the production of Stx due to quorum sensing. Genes encoding Stx, which are transcribed along with λ-like phage genes, are induced by an SOS response, and genes involved in the SOS response were also regulated by quorum sensing. These results indicate that quorum sensing is a global regulatory mechanism for basic physiological functions of E. coli as well as for virulence factors.


1970 ◽  
Vol 18 ◽  
pp. 99-103 ◽  
Author(s):  
S Biswas ◽  
MAK Parvez ◽  
M Shafiquzzaman ◽  
S Nahar ◽  
MN Rahman

Context: Escherichia coli is shed in the feces of warm blooded animals and humans and thus potential for public health. Detection and characterization of E. coli in the ready-to-eat (RTE) foods concerns due to their presence indicates fecal contamination of the food.   Objective: To identify, characterize and RFLP pattern analysis of E. coli isolated from RTE foods vended in Islamic University campus, Kushtia.   Materials and Methods: Fifty samples from four types of consumed foods in six student halls of residence, some temporary restaurants of Islamic University, Kushtia were assessed for bacterial contamination by standard methods. Identification and characterization of E. coli isolates were performed using IMViC tests. Genomic DNA was used to perform RFLP pattern analysis.   Results: Thirty seven out of 50 (74%) examined samples of RTE foods had E. coli contamination. The highest number of E. coli was isolated from vegetable oriented RTE foods (90.90%) and fish, meat and cereals samples were also significantly E. coli positive. RFLP profiling of two E. coli isolates were observed.   Conclusion: The results of this study provide evidence that some RTE foods had unsatisfactory levels of contamination with E. coli. Thus street vended RTE food could be important potential vehicles for food-borne diseases. Molecular characterization may be exploited to identify food borne pathogen among different species.  Keywords: Ready-to-eat foods; Escherichia coli; RFLP pattern DOI: http://dx.doi.org/10.3329/jbs.v18i0.8783 JBS 2010; 18(0): 99-103


2003 ◽  
Vol 69 (8) ◽  
pp. 4915-4926 ◽  
Author(s):  
Michael B. Cooley ◽  
William G. Miller ◽  
Robert E. Mandrell

ABSTRACT Enteric pathogens, such as Salmonella enterica and Escherichia coli O157:H7, have been shown to contaminate fresh produce. Under appropriate conditions, these bacteria will grow on and invade the plant tissue. We have developed Arabidopsis thaliana (thale cress) as a model system with the intention of studying plant responses to human pathogens. Under sterile conditions and at 100% humidity, S. enterica serovar Newport and E. coli O157:H7 grew to 109 CFU g−1 on A. thaliana roots and to 2 × 107 CFU g−1 on shoots. Furthermore, root inoculation led to contamination of the entire plant, indicating that the pathogens are capable of moving on or within the plant in the absence of competition. Inoculation with green fluorescent protein-labeled S. enterica and E. coli O157:H7 showed invasion of the roots at lateral root junctions. Movement was eliminated and invasion decreased when nonmotile mutants of S. enterica were used. Survival of S. enterica serovar Newport and E. coli O157:H7 on soil-grown plants declined as the plants matured, but both pathogens were detectable for at least 21 days. Survival of the pathogen was reduced in unautoclaved soil and amended soil, suggesting competition from indigenous epiphytes from the soil. Enterobacter asburiae was isolated from soil-grown A. thaliana and shown to be effective at suppressing epiphytic growth of both pathogens under gnotobiotic conditions. Seed and chaff harvested from contaminated plants were occasionally contaminated. The rate of recovery of S. enterica and E. coli O157:H7 from seed varied from undetectable to 19% of the seed pools tested, depending on the method of inoculation. Seed contamination by these pathogens was undetectable in the presence of the competitor, Enterobacter asburiae. Sampling of 74 pools of chaff indicated a strong correlation between contamination of the chaff and seed (P = 0.025). This suggested that contamination of the seed occurred directly from contaminated chaff or by invasion of the flower or silique. However, contaminated seeds were not sanitized by extensive washing and chlorine treatment, indicating that some of the bacteria reside in a protected niche on the seed surface or under the seed coat.


2014 ◽  
Vol 77 (7) ◽  
pp. 1212-1218 ◽  
Author(s):  
BURTON BLAIS ◽  
MYLÈNE DESCHÊNES ◽  
GEORGE HUSZCZYNSKI ◽  
MARTINE GAUTHIER

A simple immunoenzymatic enterohemorrhagic Escherichia coli (EHEC) colony check (ECC) assay was developed for the presumptive identification of priority EHEC colonies isolated on plating media from enrichment broth cultures of foods. With this approach, lipopolysaccharide extracted from a colony is spotted on the grid of a polymyxin-coated polyester cloth strip, and bound E. coli serogroup O26, O45, O103, O111, O121, O145, and O157 antigens are subsequently detected by sequential reactions with a pool of commercially available peroxidase-conjugated goat antibodies and tetramethylbenzidine substrate solution. Each strip can accommodate up to 15 colonies, and test results are available within 30 min. Assay performance was verified using colonies from a total of 73 target EHEC isolates covering the range of designated priority serogroups (all of which were reactive), 41 nontarget E. coli isolates including several nontarget Shiga toxin–producing E. coli serogroups (all unreactive), and 33 non–E. coli strains (all unreactive except two bacterial strains possessing O-antigenic structures in common with those of the priority EHEC). The ECC assay was reactive with target colonies grown on several types of selective and nonselective plating media designed for their cultivation. These results support the use of the ECC assay for high-throughput screening of colonies isolated on plating media for detecting priority EHEC strains in foods.


Sign in / Sign up

Export Citation Format

Share Document