scholarly journals Phenotypic Antimicrobial Susceptibility of Escherichia coli from Raw Meats, Ready-to-Eat Meats, and Their Related Samples in One Health Context

2021 ◽  
Vol 9 (2) ◽  
pp. 326
Author(s):  
Frederick Adzitey ◽  
Nurul Huda ◽  
Amir Husni Mohd Shariff

Meat is an important food source that can provide a significant amount of protein for human development. The occurrence of bacteria that are resistant to antimicrobials in meat poses a public health risk. This study evaluated the occurrence and antimicrobial resistance of E. coli (Escherichia coli) isolated from raw meats, ready-to-eat (RTE) meats and their related samples in Ghana. E. coli was isolated using the USA-FDA Bacteriological Analytical Manual and phenotypic antimicrobial susceptibility test was performed by the disk diffusion method. Of the 200 examined meats and their related samples, 38% were positive for E. coli. Notably, E. coli was highest in raw beef (80%) and lowest in RTE pork (0%). The 45 E. coli isolates were resistant ≥ 50% to amoxicillin, trimethoprim and tetracycline. They were susceptible to azithromycin (87.1%), chloramphenicol (81.3%), imipenem (74.8%), gentamicin (72.0%) and ciprofloxacin (69.5%). A relatively high intermediate resistance of 33.0% was observed for ceftriaxone. E. coli from raw meats, RTE meats, hands of meat sellers and working tools showed some differences and similarities in their phenotypic antimicrobial resistance patterns. Half (51.1%) of the E. coli isolates exhibited multidrug resistance. The E. coli isolates showed twenty-two different resistant patterns, with a multiple antibiotic resistance index of 0.0 to 0.7. The resistant pattern amoxicillin (A, n = 6 isolates) and amoxicillin-trimethoprim (A-TM, n = 6 isolates) were the most common. This study documents that raw meats, RTE meats and their related samples in Ghana are potential sources of antimicrobial-resistant E. coli and pose a risk for the transfer of resistant bacteria to the food chain, environment and humans.

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3449
Author(s):  
Cristina-Mirabela Gaşpar ◽  
Ludovic Toma Cziszter ◽  
Cristian Florin Lăzărescu ◽  
Ioan Ţibru ◽  
Marius Pentea ◽  
...  

This study aimed to compare the antibiotic resistance levels of the indicator bacteria Escherichia coli in wastewater samples collected from two hospitals and two urban communities. Antimicrobial susceptibility testing was performed on 81 E. coli isolates (47 from hospitals and 34 from communities) using the disc diffusion method according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) methodology. Ten antibiotics from nine different classes were chosen. The strains isolated from the community wastewater, compared to those from the hospital wastewater, were not resistant to gentamicin (p = 0.03), but they showed a significantly higher susceptibility—increased exposure to ceftazidime (p = 0.001). Multidrug resistance was observed in 85.11% of the hospital wastewater isolates and 73.53% of the community isolates (p > 0.05). The frequency of the presumed carbapenemase-producing E. coli was higher among the community isolates (76.47% compared to 68.09%) (p > 0.05), whereas the frequency of the presumed extended-spectrum beta-lactamase (ESBL)-producing E. coli was higher among the hospital isolates (21.28% compared to 5.88%) (p > 0.05). The antibiotic resistance rates were high in both the hospital and community wastewaters, with very few significant differences between them, so the community outlet might be a source of resistant bacteria that is at least as important as the well-recognised hospitals.


2019 ◽  
Vol 71 (6) ◽  
pp. 1968-1976 ◽  
Author(s):  
J.M. Rossato ◽  
B.G. Brito ◽  
R.K.T. Kobayashi ◽  
V.L. Koga ◽  
J.J.P. Sarmiento ◽  
...  

ABSTRACT Diarrheagenic (DEC) and avian pathogenic Escherichia coli (APEC) are associated with intestinal and extra-intestinal infections (ExPEC), respectively. We aimed to analyze the antimicrobial susceptibility, gene encoding virulence factors associated to DEC and APEC, and phylogenetic classification in E. coli isolated from 320 samples of feed and ingredients. Antimicrobial susceptibility was performed using the disk diffusion method and Multiple Antibiotic Resistance (MAR) Index and Multi-Drug Resistance (MDR) were calculated. Phylogenetic classification was performed on samples harboring DEC and/or APEC virulence-associated genes. A total of 110 E. coli strains were isolated in 15% (49/320) of the evaluated inputs (n=13 vegetable meal; n=33 animal meal, n=3 feed). In general, the isolates showed the highest rates of antimicrobial resistance to sulfonamide and cefazolin and 18% (20/110) were multi-drug resistant. MAR index of feed samples was the highest (0.467). Six and five strains had APEC and DEC virulence-associated genes, respectively, and belonging to phylogenetic groups A and B1. These findings point to the need for strict microbiological control during the production process of these foods.


2007 ◽  
Vol 1 (03) ◽  
pp. 263-268 ◽  
Author(s):  
Jean-Marie Sire ◽  
Pierre Nabeth ◽  
Jean-David Perrier-Gros-Claude ◽  
Ibrahim Bahsoun ◽  
Tidiane Siby ◽  
...  

Background: Data regarding the evolution of antimicrobial resistance are needed to suggest appropriate empirical treatment of urinary tract infections (UTI) in developing countries. To assess the antimicrobial susceptibility of Escherichia coli, the predominant pathogen in community-acquired UTI, a prospective multicenter study was carried out in Dakar, Senegal. Methodology: From February 2004 to October 2006, 1010 non-duplicate E. coli strains were collected from four centres. Antimicrobial susceptibility testing was performed using disk diffusion method according to the recommendations of the CA-SFM (2004). Results: Most of the isolates were resistant to amoxicillin (73.1%), amoxicillin-clavulanic acid (67.5%), cephalothin (55.8%), and trimethoprim/sulfamethoxazole (68.1%). Extended spectrum beta-lactamase was detected in 38 strains. The overall resistance rates to nalidixic acid, norfloxacin and ciprofloxacin were 23.9%, 16.4% and 15.5%, respectively. Most of the strains were susceptible to gentamicin, nitrofurantoin and fosfomycin (respective susceptibility rates, 93.8%, 89.9%, and 99.3%). During this period, a significant decrease in sensitivity was observed for cephalothin, fluoroquinolones and trimethoprim/sulfamethoxazole (p


Author(s):  
T. S. P. J. Jayaweera ◽  
J. L. P. C. Randika ◽  
H. G. C. L. Gamage ◽  
N. N. Udawatta ◽  
W. U. N. T. S. Ellepola ◽  
...  

Aims: Mastitis is one of the very important and most common diseases among dairy cattle globally which leads to severe economical losses in the dairy industry. For the sustainability of the dairy sector it is critical that efficient, economically feasible treatment regime is available for clinical cases of mastitis as a part of the control program with minimum risk for residues in milk. Antimicrobials are the most common drugs of choice for controlling and preventing this devastating condition. But the frequent use of antibiotics leads to the development of resistant bacteria which could have an adverse effect on human health as well. To mitigate this destructive constraint in the industry, identifying the etiology and their susceptibilities to remedial measures are of paramount importance. Hence this study was aimed at isolating and identifying the common bacterial etiology Escherichia coli, Klebsiella spp. and Staphylococcus spp. of mastitis and evaluating the antimicrobial susceptibility of the isolates in order to develop mastitis control strategies in the area. Study Design: Milk samples were collected from mastitic cows in different stages including subclinical and clinical cases based on the results of California Mastitis Test Place and Duration of Study: Samples were collected from dairy farms in Nuwera Eliya District, Sri Lanka and Laboratory investigations were carried out in the Laboratory of Livestock Production, Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, Between Aug. 2017 and Nov. 2017. Methodology: E.coli, Klebsiella spp. and Staphylococcus spp. were isolated from 31 milk samples and susceptibility to commonly used antibiotics (Trimethoprim, Oxytetracycline, Chloramphenicol, Cephalexin, Enrofloxacin and Ciprofloxacin) was determined by Kirby Bauer disk diffusion method. Results: The study revealed that the most common isolate was the Klebsiella spp. and it is 54.8% and other two organisms Staphylococcus spp. had 51.6% and Escherichia coli 41.9%. Of all isolated pathogen, 97.1% exhibited resistant to Cephalexin and it was the highest while lowest resistance was to Chloramphenicol (31.4%). Among the other antibiotics, 54.3% of total isolates showed resistance to Trimethoprim followed by 42.9% to Oxytetracycline and Enrofloxacin, 34.3% was resistant to Ciprofloxacin. Resistance to at least one antibiotic was observed for the isolated microorganisms. All the three isolated pathogens are more resistant to Cephalexin. Both E. coli and Klebsiella spp. show 100% resistance to Cephalexin while Staphylococci had 92.9% resistance. This further revealed that E. coli (10%) and Klebsiella spp. (27.3%) are showing the least resistance to Chloramphenicol, None of Staphylococcus spp. (0%) isolated show resistance to Enrofloxacin. Conclusion: Most common organisms isolated were Klebsiella spp. followed by Staphylococcus spp., E. coli and there is a resistance of isolated organisms to some commonly used antibiotics.


2021 ◽  
Vol 12 ◽  
Author(s):  
Aklilu Feleke Haile ◽  
Silvia Alonso ◽  
Nega Berhe ◽  
Tizeta Bekele Atoma ◽  
Prosper N. Boyaka ◽  
...  

Escherichia coli O157:H7 is an important foodborne pathogen but largely under investigated in Africa. The objectives of this study were to estimate the prevalence and pattern of antimicrobial resistance of E. coli O157:H7 in lettuce in Addis Ababa, Ethiopia. A total of 390 retail lettuce samples were collected across the 10 subcities of Addis Ababa. E. coli O157:H7 was isolated and identified following ISO-16654:2001 standard. The isolates were further tested for antimicrobial susceptibility to 13 antimicrobials using the Kirby–Bauer disk diffusion method. Out of the 390 lettuce samples examined, two (0.51%) carried E. coli O157:H7. The antimicrobial susceptibility pattern of strains showed resistance to ampicillin (100%) and tetracycline (50.0%). One of the two isolates was multidrug resistant to two antimicrobials tested. The results of this study demonstrate the presence of drug-resistant E. coli O157:H7 in lettuce in markets in Addis Ababa. Despite the low prevalence, its presence in a product that is eaten raw highlights potential public health risk in the area associated with this pathogen.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Wassiyath Moussé ◽  
Haziz Sina ◽  
Farid Baba-Moussa ◽  
Pacôme A. Noumavo ◽  
Nadège A. Agbodjato ◽  
...  

The present study aimed at biochemical and molecular characterization ofEscherichia colistrains isolated from horticultural products and irrigation water of Cotonou. The samples were collected from 12 market gardeners of 4 different sites. Rapid’E. colimedium was used for identification ofE. colistrains and the antimicrobial susceptibility was performed by the agar disk diffusion method. Theβ-lactamases production was sought by the liquid acidimetric method. The genes coding forβ-lactamases and toxins were identified by PCR method. The results revealed that about 34.95% of the analyzed samples were contaminated byE. coli. Cabbages were the most contaminated byE. coli(28.26%) in dry season. All isolated strains were resistant to amoxicillin. The penicillinase producingE. colicarriedblaTEM(67.50%),blaSHV(10%), andblaCTX-M(22.50%) genes. The study revealed that the resistance genes such as SLTI (35.71%), SLTII (35.71%), ETEC (7.15%), and VTEC (21.43%) were carried. Openly to the found results and considering the importance of horticultural products in Beninese food habits, it is important to put several strategies aiming at a sanitary security by surveillance and sensitization of all the actors on the risks of some practices.


2005 ◽  
Vol 71 (3) ◽  
pp. 1394-1404 ◽  
Author(s):  
Raida S. Sayah ◽  
John B. Kaneene ◽  
Yvette Johnson ◽  
RoseAnn Miller

ABSTRACT A repeated cross-sectional study was conducted to determine the patterns of antimicrobial resistance in 1,286 Escherichia coli strains isolated from human septage, wildlife, domestic animals, farm environments, and surface water in the Red Cedar watershed in Michigan. Isolation and identification of E. coli were done by using enrichment media, selective media, and biochemical tests. Antimicrobial susceptibility testing by the disk diffusion method was conducted for neomycin, gentamicin, streptomycin, chloramphenicol, ofloxacin, trimethoprim-sulfamethoxazole, tetracycline, ampicillin, nalidixic acid, nitrofurantoin, cephalothin, and sulfisoxazole. Resistance to at least one antimicrobial agent was demonstrated in isolates from livestock, companion animals, human septage, wildlife, and surface water. In general, E. coli isolates from domestic species showed resistance to the largest number of antimicrobial agents compared to isolates from human septage, wildlife, and surface water. The agents to which resistance was demonstrated most frequently were tetracycline, cephalothin, sulfisoxazole, and streptomycin. There were similarities in the patterns of resistance in fecal samples and farm environment samples by animal, and the levels of cephalothin-resistant isolates were higher in farm environment samples than in fecal samples. Multidrug resistance was seen in a variety of sources, and the highest levels of multidrug-resistant E. coli were observed for swine fecal samples. The fact that water sample isolates were resistant only to cephalothin may suggest that the resistance patterns for farm environment samples may be more representative of the risk of contamination of surface waters with antimicrobial agent-resistant bacteria.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Laura Marchetti ◽  
Daniel Buldain ◽  
Lihuel Gortari Castillo ◽  
Andrea Buchamer ◽  
Manuel Chirino‐Trejo ◽  
...  

The close contact between dogs and humans creates the best bridge for interspecies transmission of antimicrobial-resistant bacteria. The surveillance of its resistance including the detection of extended-spectrum beta-lactamases (ESBLs) in Escherichia coli as indicator bacteria is an important tool to control the use of antimicrobials. The aim of this research was to evaluate the E. coli resistance in strains by phenotypic methods, isolated from pet and stray dogs of La Plata city, Argentina. Faecal samples were collected using rectal swabs from 50 dogs with owners (home dogs = HD) and 50 homeless dogs (stray dogs = SD). They were cultured in 3 MacConkey agar plates, with and without antibiotics (ciprofloxacin and cefotaxime). 197 strains were isolated, of which only 95 strains were biochemically identified as E. coli, 46 strains were from HD, and 49 were from SD. Antimicrobial susceptibility was evaluated by the Kirby–Bauer disk diffusion method. The most prevalent resistance was for tetracycline, streptomycin, and ampicillin. In both groups, the level of resistance to 3rd generation cephalosporins was high, and there were multiresistant strains. There was a higher level of antimicrobial resistance in strains from SD compared to HD. There were 8% of strains suspected of being ESBLs among samples of HD and 36% of SD. One (2%) of the strains isolated from HD and 11 (22%) from SD were phenotypically confirmed as ESBL. Pets and stray dogs are a potential source of E. coli antibiotic resistance in Argentina; therefore, its surveillance must be guaranteed.


2020 ◽  
Author(s):  
Paul Katongole ◽  
Fatuma Nalubega ◽  
Najjuka Christine Florence ◽  
Benon Asiimwe ◽  
Irene Andia

Abstract Introduction: Uropathogenic E. coli is the leading cause of Urinary tract infections (UTIs), contributing to 80-90% of all community-acquired and 30-50% of all hospital-acquired UTIs. Biofilm forming Uropathogenic E. coli are associated with persistent and chronic inflammation leading to complicated and or recurrent UTIs. Biofilms provide an environment for poor antibiotic penetration and horizontal transfer of virulence genes which favors the development of Multidrug-resistant organisms (MDRO). Understanding biofilm formation and antimicrobial resistance determinants of Uropathogenic E. coli strains will provide insight into the development of treatment options for biofilm-associated UTIs. The aim of this study was to determine the biofilm forming capability, presence of virulence genes and antimicrobial susceptibility pattern of Uropathogenic E. coli isolates in Uganda. Methods: This was a cross-sectional study carried in the Clinical Microbiology and Molecular biology laboratories at the Department of Medical Microbiology, Makerere University College of Health Sciences. We randomly selected 200 Uropathogenic E. coli clinical isolates among the stored isolates collected between January 2018 and December 2018 that had significant bacteriuria (>105 CFU). All isolates were subjected to biofilm detection using the Congo Red Agar method and Antimicrobial susceptibility testing was performed using the Kirby disk diffusion method. The isolates were later subjected PCR for the detection of Urovirulence genes namely; Pap, Fim, Sfa, Afa, Hly and Cnf, using commercially designed primers.Results: In this study, 62.5% (125/200) were positive biofilm formers and 78% (156/200) of these were multi-drug resistant (MDR). The isolates were most resistant to Trimethoprim sulphamethoxazole and Amoxicillin (93%) followed by gentamycin (87%) and the least was imipenem (0.5%). Fim was the most prevalent Urovirulence gene (53.5%) followed by Pap (21%), Sfa (13%), Afa (8%), Cnf (5.5%) and Hyl (0%).Conclusions: We demonstrate a high prevalence of biofilm-forming Uropathogenic E. coli strains that are highly associated with the MDR phenotype. We recommend routine surveillance of antimicrobial resistance and biofilm formation to understand the antibiotics suitable in the management of biofilm-associated UTIs.


2018 ◽  
Vol 81 (2) ◽  
pp. 226-232 ◽  
Author(s):  
Rabee A. Ombarak ◽  
Atsushi Hinenoya ◽  
Abdel-Rahman M. Elbagory ◽  
Shinji Yamasaki

ABSTRACT The goal of this study was to examine antimicrobial resistance and characterize the implicated genes in 222 isolates of Escherichia coli from 187 samples of raw milk and the two most popular cheeses in Egypt. E. coli isolates were tested for susceptibility to 12 antimicrobials by a disk diffusion method. Among the 222 E. coli isolates, 66 (29.7%) were resistant to one or more antimicrobials, and half of these resistant isolates showed a multidrug resistance phenotype (resistance to at least three different drug classes). The resistance traits were observed to tetracycline (27.5%), ampicillin (18.9%), streptomycin (18.5%), sulfamethoxazole-trimethoprim (11.3%), cefotaxime (4.5%), kanamycin (4.1%), ceftazidime (3.6%), chloramphenicol (2.3%), nalidixic acid (1.8%), and ciprofloxacin (1.4%). No resistance to fosfomycin and imipenem was observed. Tetracycline resistance genes tetA, tetB, and tetD were detected in 53 isolates, 9 isolates, and 1 isolate, respectively, but tetC was not detected. Aminoglycoside resistance genes strA, strB, aadA, and aphA1 were detected in 41, 41, 11, and 9 isolates, respectively. Sulfonamide resistance genes sul1, sul2, and sul3 were detected in 7, 25, and 3 isolates, respectively. Of 42 ampicillin-resistant isolates, blaTEM, blaCTX-M, and blaSHV were detected in 40, 9, and 3 isolates, respectively, and 10 (23.8%) ampicillin-resistant isolates were found to produce extended-spectrum β-lactamase. Each bla gene of extended-spectrum β-lactamase–producing E. coli was further subtyped to be blaCTX-M-15, blaCTX-M-104, blaTEM-1, and blaSHV-12. The class 1 integron was also detected in 28 resistant isolates, and three different patterns were obtained by PCR-restriction fragment length polymorphism. Sequencing analysis of the variable region revealed that four isolates had dfrA12/orfF/aadA2, two had aadA22, and one had dfrA1/aadA1. These data suggest that antimicrobial-resistant E. coli are widely distributed in the milk production and processing environment in Egypt and may play a role in dissemination of antimicrobial resistance to other pathogenic and commensal bacteria.


Sign in / Sign up

Export Citation Format

Share Document