Phenotypic Characterization of Salmonella Isolated from Food Production Environments Associated with Low–Water Activity Foods

2013 ◽  
Vol 76 (9) ◽  
pp. 1488-1499 ◽  
Author(s):  
SARAH FINN ◽  
JAY C. D. HINTON ◽  
PETER McCLURE ◽  
ALÉJANDRO AMÉZQUITA ◽  
MARTA MARTINS ◽  
...  

Salmonella can survive for extended periods of time in low-moisture environments posing a challenge for modern food production. This dangerous pathogen must be controlled throughout the production chain with a minimal risk of dissemination. Limited information is currently available describing the behavior and characteristics of this important zoonotic foodborne bacterium in low-moisture food production environments and in food. In our study, the phenotypes related to low-moisture survival of 46 Salmonella isolates were examined. Most of the isolates in the collection could form biofilms under defined laboratory conditions, with 57% being positive for curli fimbriae production and 75% of the collection positive for cellulose production, which are both linked with stronger biofilm formation. Biocides in the factory environment to manage hygiene were found to be most effective against planktonic cells but less so when the same bacteria were surface dried or present as a biofilm. Cellulose-producing isolates were better survivors when exposed to a biocide compared with cellulose-negative isolates. Examination of Salmonella growth of these 18 serotypes in NaCl, KCl, and glycerol found that glycerol was the least inhibitory of these three humectants. We identified a significant correlation between the ability to survive in glycerol and the ability to survive in KCl and biofilm formation, which may be important for food safety and the protection of public health.

Viruses ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 722 ◽  
Author(s):  
Pennone ◽  
Sanz-Gaitero ◽  
O’Connor ◽  
Coffey ◽  
Jordan ◽  
...  

Listeria monocytogenes is a ubiquitous Gram-positive bacterium that is a major concern for food business operators because of its pathogenicity and ability to form biofilms in food production environments. Bacteriophages (phages) have been evaluated as biocontrol agents for L. monocytogenes in a number of studies and, indeed, certain phages have been approved for use as anti-listerial agents in food processing environments (ListShield and PhageGuard Listex). Endolysins are proteins produced by phages in the host cell. They cleave the peptidoglycan cell wall, thus allowing release of progeny phage into the environment. In this study, the amidase domain of the phage vB_LmoS_293 endolysin (293-amidase) was cloned and expressed in Escherichia. coli (E. coli). Muralytic activity at different concentrations, pH and temperature values, lytic spectrum and activity against biofilms was determined for the purified 293-amidase protein. The results showed activity on autoclaved cells at three different temperatures (20 °C, 37 °C and 50 °C), with a wider specificity (L. monocytogenes 473 and 3099, a serotype 4b and serogroup 1/2b-3b-7, respectively) compared to the phage itself, which targets only L. monocytogenes serotypes 4b and 4e. The protein also inhibits biofilm formation on abiotic surfaces. These results show the potential of using recombinant antimicrobial proteins against pathogens in the food production environment.


2015 ◽  
Vol 172 ◽  
pp. 68-78 ◽  
Author(s):  
Sara A. Ochoa ◽  
Ariadnna Cruz-Córdova ◽  
Gerardo E. Rodea ◽  
Vicenta Cázares-Domínguez ◽  
Gerardo Escalona ◽  
...  

2006 ◽  
Vol 72 (4) ◽  
pp. 2564-2572 ◽  
Author(s):  
Gaylen A. Uhlich ◽  
Peter H. Cooke ◽  
Ethan B. Solomon

ABSTRACT In a previous study, we identified Congo red-binding and -nonbinding phase variants of Escherichia coli serotype O157:H7 strain ATCC 43895. The Congo red-binding variant, strain 43895OR, produced a dry, aggregative colony that was similar to the red, dry, and rough (rdar) phenotype characteristic of certain strains of Salmonella. In contrast, variant 43895OW produced a smooth and white colony morphology. In this study, we show that, similar to rdar strains of Salmonella enterica serovar Typhimurium, strain 43895OR forms large aggregates in broth cultures, firm pellicles at the air-medium interface on glass, and dense biofilms on glass and polystyrene. However, unlike S. enterica serovar Typhimurium, strain 43895OR does not stain positive for cellulose production. When strain 43895OR was fixed on agar, scanning electron microscopy showed cells expressing extracellular matrix (ECM) containing curli fibers. Strain 43895OW was devoid of any ECM or curli fibers on agar but showed expression of curli fibers during attachment to glass. Strain 43895OR produced >4-fold-larger amounts of biofilm than strain 43895OW on polystyrene, glass, stainless steel, and Teflon; formation was >3-fold higher in rich medium than in nutrient-limited medium. Biofilm-associated cells of both strains showed statistically greater resistance (P < 0.05) to hydrogen peroxide and quaternary ammonium sanitizer than their respective planktonic cells. This study shows that the rdar phenotype of E. coli O157:H7 strain 43895OR is important in multicellular growth, biofilm formation, and resistance to sanitizers. However, the lack of cellulose production by strain 43895OR indicates important differences in the ECM composition compared to that of Salmonella.


2017 ◽  
Vol 80 (12) ◽  
pp. 1964-1972 ◽  
Author(s):  
Diana Ayala ◽  
Kendra Nightingale ◽  
Claudia Narvaez-Bravo ◽  
Mindy M. Brashears

ABSTRACT Nontyphoid Salmonella strains are some of the leading causes of foodborne illnesses worldwide; however, there is very limited information on the presence and characteristics of Salmonella in the food production chain in developing countries. In this study, pulsed-field gel electrophoresis (PFGE) was used for molecular subtyping and for monitoring the ecology and transmission of Salmonella isolates in a slaughter facility in Mexico in an attempt to determine specific steps that need to be improved to reduce Salmonella contamination in beef carcasses. A total of 94 isolates from a Salmonella stock culture collection originally obtained from a single vertically integrated feedlot and beef abattoir in Mexico were analyzed. A total of 26 unique PFGE patterns were identified, 38.5% of them corresponding to a single serotype. High concordance (88.4%) was found between serotype and PFGE banding subtype. Salmonella Kentucky and Salmonella Give were the most clonal subtypes in this study, and Salmonella Muenster was the most diverse, with 11 banding patterns identified. A total of 73.7, 70.6, and 85.7% of the PFGE subtypes identified from preevisceration, precooler, and chilled carcasses, respectively, were identified only at those specific points and not at any previous or subsequent steps of the slaughter process, suggesting that each step is in itself a source of Salmonella contamination. Salmonella Mbandaka was more likely to be recovered from feces than from any of the steps of the slaughter process. The genetic diversity and distribution of PFGE subtypes in the processing facility highlight the need to implement antimicrobial interventions and improve sanitation procedures at various points to avoid further Salmonella dissemination into the meat supply.


2020 ◽  
Vol 9 (8) ◽  
pp. e90985117
Author(s):  
Jaqueline da Silva Rumão ◽  
Christian Oliveira Reinehr

It is necessary to ensure food quality and safety during all stages of food production. The major challenge in the food sector is the control of microbial multiplication, as microorganisms are increasingly looking for alternatives, which involve their development, both in free form as in biofilm, to survive environmental attacks. Due to this concern, researchers use new strategies to understand the dynamics of microbial growth. In this context, predictive microbiology is gaining space in food microbiology. Therefore, the objective of the study was to verify whether the current predictive models are adequate to predict the growth of sessile cells, as well as planktonic cells. A bibliographic survey on the application of predictive microbiology in the evaluation of food safety control was carried out, and we concluded that, due to the scarcity of studies, it was not possible to state the adequacy of tertiary models in the control of biofilms during food production. We highlight the need for studies that can model the formation of biofilm of pathogens under different environmental factors.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Elizabeth Tolulope Olubisose ◽  
Abraham Ajayi ◽  
Adeyemi Isaac Adeleye ◽  
Stella Ifeanyi Smith

Abstract Background Multidrug resistance efflux pumps and biofilm formation are mechanisms by which bacteria can evade the actions of many antimicrobials. Antibiotic resistant non-typhoidal Salmonella serovars have become wide spread causing infections that result in high morbidity and mortality globally. The aim of this study was to evaluate the efflux pump activity and biofilm forming capability of multidrug resistant non-typhoidal Salmonella (NTS) serovars isolated from food handlers and animals (cattle, chicken and sheep) in Lagos. Methods Forty eight NTS serovars were subjected to antibiotic susceptibility testing by the disc diffusion method and phenotypic characterization of biofilm formation was done by tissue culture plate method. Phenotypic evaluation of efflux pump activity was done by the ethidium bromide cartwheel method and genes encoding biofilm formation and efflux pump activity were determined by PCR. Results All 48 Salmonella isolates displayed resistance to one or more classes of test antibiotics with 100% resistance to amoxicillin-clavulanic acid. Phenotypically, 28 (58.3%) of the isolates exhibited efflux pump activity. However, genotypically, 7 (14.6%) of the isolates harboured acrA, acrB and tolC, 8 (16.7%) harboured acrA, acrD and tolC while 33 (68.8%) possessed acrA, acrB, acrD and tolC. All (100%) the isolates phenotypically had the ability to form biofilm with 23 (47.9%), 24 (50.0%), 1 (2.1%) categorized as strong (SBF), moderate (MBF) and weak (WBF) biofilm formers respectively but csgA gene was detected in only 23 (47.9%) of them. Antibiotic resistance frequency was significant (p < 0.05) in SBF and MBF and efflux pump activity was detected in 6, 21, and 1 SBF, MBF and WBF respectively. Conclusion These data suggest that Salmonella serovars isolated from different food animals and humans possess active efflux pumps and biofilm forming potential which has an interplay in antibiotic resistance. There is need for prudent use of antibiotics in veterinary medicine and scrupulous hygiene practice to prevent the transmission of multidrug resistant Salmonella species within the food chain.


2021 ◽  
Vol 9 (9) ◽  
pp. 1856
Author(s):  
Natalia Unrath ◽  
Evonne McCabe ◽  
Guerrino Macori ◽  
Séamus Fanning

Listeria monocytogenes is the etiological agent of listeriosis, a foodborne illness associated with high hospitalizations and mortality rates. This bacterium can persist in food associated environments for years with isolates being increasingly linked to outbreaks. This review presents a discussion of genomes of Listeria monocytogenes which are commonly regarded as persisters within food production environments, as well as genes which are involved in mechanisms aiding this phenotype. Although criteria for the detection of persistence remain undefined, the advent of whole genome sequencing (WGS) and the development of bioinformatic tools have revolutionized the ability to find closely related strains. These advancements will facilitate the identification of mechanisms responsible for persistence among indistinguishable genomes. In turn, this will lead to improved assessments of the importance of biofilm formation, adaptation to stressful conditions and tolerance to sterilizers in relation to the persistence of this bacterium, all of which have been previously associated with this phenotype. Despite much research being published around the topic of persistence, more insights are required to further elucidate the nature of true persistence and its implications for public health.


Sign in / Sign up

Export Citation Format

Share Document