scholarly journals Regulated promoters applied to plant engineering: an insight over promising soybean promoters under biotic stress and their cis-elements

2021 ◽  
Vol 5 (1) ◽  
pp. e2021005
Author(s):  
Bruno Paes de Melo ◽  
Stéfanie Menezes de Moura ◽  
Carolina Vianna Morgante ◽  
Daniele Heloisa Pinheiro ◽  
Nayara Sabrina Freitas Alves ◽  
...  
2021 ◽  
Author(s):  
Gajendra Singh Jeena ◽  
Ujjal Jyoti Phukan ◽  
Neeti Singh ◽  
Ashutosh Joshi ◽  
Alok Pandey ◽  
...  

ABSCISIC ACID REPRESSOR-1 (ABR1), an APETALA2 (AP2) domain containing transcription factor (TF) contribute important function against variety of external cues. Here, we report an AP2/ERF TF, AtERF60 that serves as an important regulator of ABR1 gene. AtERF60 is induced in response to drought, salt, abscisic acid (ABA), salicylic acid (SA), and bacterial pathogen PstDC3000 infection. AtERF60 interacts with DEHYDRATION RESPONSE ELEMENTS (DRE1/2) and GCC box indicating its ability to regulate multiple responses. Overexpression of AtERF60 results in the drought and salt stress tolerant phenotype in both seedling and mature Arabidopsis plants in comparison with the wild type (WT-Col). However, mutation in AtERF60 showed hyperactive response against drought and salt stress in comparison with its overexpression and WT. Microarray and qRT-PCR analysis of overexpression and mutant lines indicated that AtERF60 regulates both abiotic and biotic stress inducible genes. One of the differentially expressing transcripts was ABR1 and we found that AtERF60 interacts with the DRE cis-elements present in the ABR1 promoter. The mutation in AtERF60 showed ABA hypersensitive response, increased ABA content, and reduced susceptibility to PstDC3000. Altogether, we conclude that AtERF60 represses ABR1 transcript by binding with the DRE cis-elements and modulates both abiotic and biotic stress responses in Arabidopsis.


2013 ◽  
Vol 163 (4) ◽  
pp. 1868-1882 ◽  
Author(s):  
J. Xiao ◽  
H. Cheng ◽  
X. Li ◽  
J. Xiao ◽  
C. Xu ◽  
...  

2010 ◽  
Vol 32 (6) ◽  
pp. 561-570
Author(s):  
Zhao-Hui XIE
Keyword(s):  

Crop Science ◽  
2002 ◽  
Vol 42 (2) ◽  
pp. 656 ◽  
Author(s):  
D. Ames Herbert
Keyword(s):  

Genetics ◽  
2001 ◽  
Vol 157 (4) ◽  
pp. 1569-1579 ◽  
Author(s):  
Michael L Rolfsmeier ◽  
Michael J Dixon ◽  
Luis Pessoa-Brandão ◽  
Richard Pelletier ◽  
Juan José Miret ◽  
...  

Abstract Trinucleotide repeat (TNR) instability in humans is governed by unique cis-elements. One element is a threshold, or minimal repeat length, conferring frequent mutations. Since thresholds have not been directly demonstrated in model systems, their molecular nature remains uncertain. Another element is sequence specificity. Unstable TNR sequences are almost always CNG, whose hairpin-forming ability is thought to promote instability by inhibiting DNA repair. To understand these cis-elements further, TNR expansions and contractions were monitored by yeast genetic assays. A threshold of ∼15–17 repeats was observed for CTG expansions and contractions, indicating that thresholds function in organisms besides humans. Mutants lacking the flap endonuclease Rad27p showed little change in the expansion threshold, suggesting that this element is not altered by the presence or absence of flap processing. CNG or GNC sequences yielded frequent mutations, whereas A-T rich sequences were substantially more stable. This sequence analysis further supports a hairpin-mediated mechanism of TNR instability. Expansions and contractions occurred at comparable rates for CTG tract lengths between 15 and 25 repeats, indicating that expansions can comprise a significant fraction of mutations in yeast. These results indicate that several unique cis-elements of human TNR instability are functional in yeast.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 776
Author(s):  
Shipra Kumari ◽  
Bashistha Kumar Kanth ◽  
Ju young Ahn ◽  
Jong Hwa Kim ◽  
Geung-Joo Lee

Genome-wide transcriptome analysis using RNA-Seq of Lilium longiflorum revealed valuable genes responding to biotic stresses. WRKY transcription factors are regulatory proteins playing essential roles in defense processes under environmental stresses, causing considerable losses in flower quality and production. Thirty-eight WRKY genes were identified from the transcriptomic profile from lily genotypes, exhibiting leaf blight caused by Botrytis elliptica. Lily WRKYs have a highly conserved motif, WRKYGQK, with a common variant, WRKYGKK. Phylogeny of LlWRKYs with homologous genes from other representative plant species classified them into three groups- I, II, and III consisting of seven, 22, and nine genes, respectively. Base on functional annotation, 22 LlWRKY genes were associated with biotic stress, nine with abiotic stress, and seven with others. Sixteen unique LlWRKY were studied to investigate responses to stress conditions using gene expression under biotic and abiotic stress treatments. Five genes—LlWRKY3, LlWRKY4, LlWRKY5, LlWRKY10, and LlWRKY12—were substantially upregulated, proving to be biotic stress-responsive genes in vivo and in vitro conditions. Moreover, the expression patterns of LlWRKY genes varied in response to drought, heat, cold, and different developmental stages or tissues. Overall, our study provides structural and molecular insights into LlWRKY genes for use in the genetic engineering in Lilium against Botrytis disease.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Kieu Thi Xuan Vo ◽  
Md Mizanor Rahman ◽  
Md Mustafizur Rahman ◽  
Kieu Thi Thuy Trinh ◽  
Sun Tae Kim ◽  
...  

AbstractBiotic stresses represent a serious threat to rice production to meet global food demand and thus pose a major challenge for scientists, who need to understand the intricate defense mechanisms. Proteomics and metabolomics studies have found global changes in proteins and metabolites during defense responses of rice exposed to biotic stressors, and also reported the production of specific secondary metabolites (SMs) in some cultivars that may vary depending on the type of biotic stress and the time at which the stress is imposed. The most common changes were seen in photosynthesis which is modified differently by rice plants to conserve energy, disrupt food supply for biotic stress agent, and initiate defense mechanisms or by biotic stressors to facilitate invasion and acquire nutrients, depending on their feeding style. Studies also provide evidence for the correlation between reactive oxygen species (ROS) and photorespiration and photosynthesis which can broaden our understanding on the balance of ROS production and scavenging in rice-pathogen interaction. Variation in the generation of phytohormones is also a key response exploited by rice and pathogens for their own benefit. Proteomics and metabolomics studies in resistant and susceptible rice cultivars upon pathogen attack have helped to identify the proteins and metabolites related to specific defense mechanisms, where choosing of an appropriate method to identify characterized or novel proteins and metabolites is essential, considering the outcomes of host-pathogen interactions. Despites the limitation in identifying the whole repertoire of responsive metabolites, some studies have shed light on functions of resistant-specific SMs. Lastly, we illustrate the potent metabolites responsible for resistance to different biotic stressors to provide valuable targets for further investigation and application.


Sign in / Sign up

Export Citation Format

Share Document