scholarly journals On the origin of medium-period ionospheric waves and their possible modelling: a short review

1997 ◽  
Vol 40 (5) ◽  
Author(s):  
P. Dominici ◽  
L. R. Cander ◽  
B. Zolesi

This article introduces the concept of ionospheric waves with periods from about 15 min to about 4 h as one of the acoustic-gravity wave-induced phenomena. The existence of these medium-period ionospheric waves in the various ionospheric layers is supported by the results of a data analysis which has shown remarkable characteristics in occurrence and direction of the waves with a period not longer than about 2 h. The explanation offered is based on the assumption that a unique phenomenon capable to launch acoustic-gravity waves related to such ionospheric waves is the sudden change in physical conditions of the atmosphere due to the passage of the solar terminator.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Usama Kadri

A mathematical solution of the two-dimensional linear problem of an acoustic-gravity wave interacting with a rectangular trench, in a compressible ocean, is presented. Expressions for the flow field on both sides of the trench are derived. The dynamic bottom pressure produced by the acoustic-gravity waves on both sides of the trench is measurable, though on the transmission side it decreases with the trench depth. A successful recording of the bottom pressures could assist in the early detection of tsunami.


2019 ◽  
Vol 71 (1) ◽  
Author(s):  
Takeru Yamada ◽  
Takeshi Imamura ◽  
Tetsuya Fukuhara ◽  
Makoto Taguchi

AbstractThe reason for stationary gravity waves at Venus’ cloud top to appear mostly at low latitudes in the afternoon is not understood. Since a neutral layer exists in the lower part of the cloud layer, the waves should be affected by the neutral layer before reaching the cloud top. To what extent gravity waves can propagate vertically through the neutral layer has been unclear. To examine the possibility that the variation of the neutral layer thickness is responsible for the dependence of the gravity wave activity on the latitude and the local time, we investigated the sensitivity of the vertical propagation of gravity waves on the neutral layer thickness using a numerical model. The results showed that stationary gravity waves with zonal wavelengths longer than 1000 km can propagate to the cloud-top level without notable attenuation in the neutral layer with realistic thicknesses of 5–15 km. This suggests that the observed latitudinal and local time variation of the gravity wave activity should be attributed to processes below the cloud. An analytical approach also showed that gravity waves with horizontal wavelengths shorter than tens of kilometers would be strongly attenuated in the neutral layer; such waves should originate in the altitude region above the neutral layer.


2015 ◽  
Vol 8 (11) ◽  
pp. 4645-4655 ◽  
Author(s):  
B. Ehard ◽  
B. Kaifler ◽  
N. Kaifler ◽  
M. Rapp

Abstract. This study evaluates commonly used methods of extracting gravity-wave-induced temperature perturbations from lidar measurements. The spectral response of these methods is characterized with the help of a synthetic data set with known temperature perturbations added to a realistic background temperature profile. The simulations are carried out with the background temperature being either constant or varying in time to evaluate the sensitivity to temperature perturbations not caused by gravity waves. The different methods are applied to lidar measurements over New Zealand, and the performance of the algorithms is evaluated. We find that the Butterworth filter performs best if gravity waves over a wide range of periods are to be extracted from lidar temperature measurements. The running mean method gives good results if only gravity waves with short periods are to be analyzed.


2018 ◽  
Vol 11 (1) ◽  
pp. 215-232 ◽  
Author(s):  
Catrin I. Meyer ◽  
Manfred Ern ◽  
Lars Hoffmann ◽  
Quang Thai Trinh ◽  
M. Joan Alexander

Abstract. We investigate stratospheric gravity wave observations by the Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite and the High Resolution Dynamics Limb Sounder (HIRDLS) aboard NASA's Aura satellite. AIRS operational temperature retrievals are typically not used for studies of gravity waves, because their vertical and horizontal resolution is rather limited. This study uses data of a high-resolution retrieval which provides stratospheric temperature profiles for each individual satellite footprint. Therefore the horizontal sampling of the high-resolution retrieval is 9 times better than that of the operational retrieval. HIRDLS provides 2-D spectral information of observed gravity waves in terms of along-track and vertical wavelengths. AIRS as a nadir sounder is more sensitive to short-horizontal-wavelength gravity waves, and HIRDLS as a limb sounder is more sensitive to short-vertical-wavelength gravity waves. Therefore HIRDLS is ideally suited to complement AIRS observations. A calculated momentum flux factor indicates that the waves seen by AIRS contribute significantly to momentum flux, even if the AIRS temperature variance may be small compared to HIRDLS. The stratospheric wave structures observed by AIRS and HIRDLS often agree very well. Case studies of a mountain wave event and a non-orographic wave event demonstrate that the observed phase structures of AIRS and HIRDLS are also similar. AIRS has a coarser vertical resolution, which results in an attenuation of the amplitude and coarser vertical wavelengths than for HIRDLS. However, AIRS has a much higher horizontal resolution, and the propagation direction of the waves can be clearly identified in geographical maps. The horizontal orientation of the phase fronts can be deduced from AIRS 3-D temperature fields. This is a restricting factor for gravity wave analyses of limb measurements. Additionally, temperature variances with respect to stratospheric gravity wave activity are compared on a statistical basis. The complete HIRDLS measurement period from January 2005 to March 2008 is covered. The seasonal and latitudinal distributions of gravity wave activity as observed by AIRS and HIRDLS agree well. A strong annual cycle at mid- and high latitudes is found in time series of gravity wave variances at 42 km, which has its maxima during wintertime and its minima during summertime. The variability is largest during austral wintertime at 60∘ S. Variations in the zonal winds at 2.5 hPa are associated with large variability in gravity wave variances. Altogether, gravity wave variances of AIRS and HIRDLS are complementary to each other. Large parts of the gravity wave spectrum are covered by joint observations. This opens up fascinating vistas for future gravity wave research.


2013 ◽  
Vol 70 (12) ◽  
pp. 3756-3779 ◽  
Author(s):  
Kaoru Sato ◽  
Takenari Kinoshita ◽  
Kota Okamoto

Abstract A new method is proposed to estimate three-dimensional (3D) material circulation driven by waves based on recently derived formulas by Kinoshita and Sato that are applicable to both Rossby waves and gravity waves. The residual-mean flow is divided into three, that is, balanced flow, unbalanced flow, and Stokes drift. The latter two are wave-induced components estimated from momentum flux divergence and heat flux divergence, respectively. The unbalanced mean flow is equivalent to the zonal-mean flow in the two-dimensional (2D) transformed Eulerian mean (TEM) system. Although these formulas were derived using the “time mean,” the underlying assumption is the separation of spatial or temporal scales between the mean and wave fields. Thus, the formulas can be used for both transient and stationary waves. Considering that the average is inherently needed to remove an oscillatory component of unaveraged quadratic functions, the 3D wave activity flux and wave-induced residual-mean flow are estimated by an extended Hilbert transform. In this case, the scale of mean flow corresponds to the whole scale of the wave packet. Using simulation data from a gravity wave–resolving general circulation model, the 3D structure of the residual-mean circulation in the stratosphere and mesosphere is examined for January and July. The zonal-mean field of the estimated 3D circulation is consistent with the 2D circulation in the TEM system. An important result is that the residual-mean circulation is not zonally uniform in both the stratosphere and mesosphere. This is likely caused by longitudinally dependent wave sources and propagation characteristics. The contribution of planetary waves and gravity waves to these residual-mean flows is discussed.


Fluids ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 91 ◽  
Author(s):  
Usama Kadri

Time reversal of free-surface water (gravity) waves due to a sudden change in the effective gravity has been extensively studied in recent years. Here, we show that an analogy to time-reversal can be obtained using nonlinear acoustic-gravity wave theory. More specifically, we present a mathematical model for the evolution of a time-reversed gravity wave packet from a nonlinear resonant triad perspective. We show that the sudden appearance of an acoustic mode in analogy to a sudden vertical oscillation of the liquid film, can resonate effectively with the original gravity wave packet causing energy pumping into an oppositely propagating (time-reversed) surface gravity wave of an almost identical shape.


1978 ◽  
Vol 5 (4) ◽  
pp. 265-267 ◽  
Author(s):  
Anthony D. Del Genio ◽  
Joe M. Straus ◽  
Gerald Schubert

1976 ◽  
Vol 73 (1) ◽  
pp. 125-137 ◽  
Author(s):  
N. Rudraiah ◽  
M. Venkatachalappa ◽  
P. Kandaswamy

Internal Alfvén-acoustic-gravity waves propagating in an isothermal, perfectly electrically conducting, plane stratified, inviscid, compressible atmosphere permeated by a horizontal stratified magnetic field in which the mean horizontal velocity U(z) depends on the height z only exhibit singular properties at the Doppler-shifted frequencies \[ \Omega_{d} = 0,\quad\pm\Omega_A,\quad\pm\Omega_A/(1+M^2)^{\frac{1}{2}},\quad\pm (\Omega_c/2^{\frac{1}{2}})[1+M^2\pm \{(1+M^2)^2 - 4\Omega^2_A/\Omega^2_c\}^{\frac{1}{2}}]^{\frac{1}{2}} \] where ΩA is the Alfvén frequency, Ωc the sonic frequency and M the magnetic Mach number. The phenomenon of critical-layer absorption is studied using the momentum-transport approach of Booker & Bretherton (1967), the wave-packet approach (which is a consequence of the WKBJ approximation) of Bretherton (1966) and the technique involving wave normal curves of McKenzie (1973). The absorption effects are also illustrated, following Acheson (1972), by drawing ray trajectories. We find that the waves are absorbed at the critical levels Ωd = ± ΩA and ± ΩA/(1 + M2)½, and in particular we observe that these levels do not act like valves as observed by Acheson (1972). We also conclude that the combined effect of velocity shear and density and magnetic-field stratification is to increase the number of absorption levels.


2016 ◽  
Vol 34 (2) ◽  
pp. 323-330 ◽  
Author(s):  
Andrew C. Moss ◽  
Corwin J. Wright ◽  
Robin N. Davis ◽  
Nicholas J. Mitchell

Abstract. Anomalously strong westward winds during the first phase of the equatorial mesospheric semi-annual oscillation (MSAO) have been attributed to unusual filtering conditions producing exceptional gravity-wave fluxes. We test this hypothesis using meteor-radar measurements made over Ascension Island (8° S, 14° W). An anomalous wind event in 2002 of −85.5 ms−1 occurred simultaneously with the momentum fluxes of high-frequency gravity waves reaching the largest observed westward values of −29 m2 s−2 and strong westward wind accelerations of −510 ms−1 day−1. However, despite this strong wave forcing during the event, no unusual filtering conditions or significant increases in wave-excitation proxies were observed. Further, although strong westward wave-induced accelerations were also observed during the 2006 MSAO first phase, there was no corresponding simultaneous response in westward wind. We thus suggest that strong westward fluxes/accelerations of high-frequency gravity waves are not always sufficient to produce anomalous first-phase westward MSAO winds and other forcing may be significant.


2020 ◽  
Author(s):  
Young-Ha Kim ◽  
Gergely Bölöni ◽  
Sebastian Borchert ◽  
Hye-Yeong Chun ◽  
Ulrich Achatz

<p class="Normal tm5"><span class="tm6">The intermittency of gravity waves (GWs) is investigated using Multi-Scale Gravity Wave Model (MS-GWaM) implemented in the upper-atmosphere extension of ICON model. The intermittency of GWs is originated from that of wave sources but altered during propagation of the waves. Conventional GW parametrization (GWP), which diagnoses vertical profiles of GW properties under the steady-state assumption, can take into account the source intermittency if the GWP employs flow-dependent sources, while it cannot present the change of intermittency by transient evolutions of GWs. MS-GWaM is a prognostic model that explicitly solves the evolution of positions of waves (as well as their wavenumbers and amplitudes) in time and thus capable of describing the intermittency change. In order to include the source intermittency and variability, we couple the convective source, as diagnosed by subgrid-scale cumulus parametrization in ICON, to MS-GWaM, based on an analytic formulation of GW response to this source. In addition to this, a spatio-temporally uniform, persistent source is prescribed in the extratropics to take into account other non-orographic sources. Orographic sources are currently not used. The GW intermittency is measured by the Gini index, and is found to be quite high in the tropics, compared to that in the extratropics. In both regions, the index has similar values to those obtained from superpressure balloon observations reported in previous studies. A control experiment is performed using GWP based on the steady-state assumption, but coupled to the same wave sources, to assess the effects of transient modelling using MS-GWaM on the simulated intermittency. From comparison to the control experiment, the intermittency is found to increase largely for GWs from the uniform source but to decrease for convective GWs by the transient modelling.</span></p>


Sign in / Sign up

Export Citation Format

Share Document