scholarly journals Extreme Weather and the Reproductive Success of a Long-lived Pelagic Seabird.

2019 ◽  
Author(s):  
◽  
Bryony Baker

Seabirds are in decline globally and climate change is likely to increase the pressure on already struggling species. The indirect effects of climate change are widely studied, they have been shown to have a significant effect on both seabird survival and reproductive success, but the direct effects are less well understood. Climate predictions suggest that one of the direct effects, extreme weather, is predicted to increase in both frequency and intensity. Skomer Island is the largest Manx Shearwater colony in the world and the population has been increasing over recent decades, but the specific effects of extreme weather on reproductive success are unknown. This study compared the effects of average and extreme weather conditions on Manx Shearwater reproductive success, taking into account the effect of known breeding pairs and the potential effects of individual experience. It also considered the effect of inter-specific competition between shearwaters and Atlantic puffins on shearwater reproductive success. This study found that colony-level reproductive success showed no significant trend over the study period of 1995-2019, however fledging success showed a significant decline. When individual-level analysis was carried out no such trend was found: experienced breeders may be more likely to successfully raise a chick. Extreme weather was shown to have significant effects on reproductive success at the individual-level, particularly on fledging success, but this did not cause a significant decrease in fledging success over the study period. Population estimates show that shearwaters are increasing on Skomer and it is clear that weather, extreme or not, is not currently the most significant factor in determining reproductive success of Manx Shearwaters. This study also found no evidence that puffins are influencing the reproductive success of Manx Shearwaters on Skomer Island. The effects of climate change, indirect and direct, will interact and have many complex effects, especially if predictions regarding future climate change are met. Extreme weather and the effects of demography can only be studied where long- term datasets exist, therefore projects such as this are vital for ongoing seabird research and conservation.

Author(s):  
Christopher P. Borick ◽  
Barry G. Rabe

The factors that determine individual perceptions of climate change have been a focus of social science research for many years. An array of studies have found that individual-level characteristics, such as partisan affiliation, ideological beliefs, educational attainment, and race, affect one’s views on the existence of global warming, as well as the levels of concern regarding this matter. But in addition to the individual-level attributes that have been shown to affect perceptions of climate change, a growing body of literature has found that individual experiences with weather can shape a variety of views and beliefs that individuals maintain regarding climate change. These studies indicate that direct experiences with extreme weather events and abnormal seasonal temperature and precipitation levels can affect the likelihood that an individual will perceive global warming to be occurring, and in some cases their policy preferences for addressing the problem. The emerging literature on this relationship indicates that individuals are more likely to express skepticism regarding the existence of global warming when experiencing below average temperatures or above average snowfall in the period preceding an interview on their views. Conversely, higher temperatures and various extreme weather events can elevate acceptance of global warming’s existence. A number of studies also find that individuals are more likely to report weather conditions such as drought and extreme heat affected their acceptance of global warming when such conditions were occurring in their region. For example, the severe drought that has encompassed much of the western United States between 2005 and 2016 has increasingly been cited by residents of the region as the primary reason for their belief that climate change is occurring. What remains unclear at this point is whether the weather conditions are actually changing opinions regarding climate change or if the preexisting opinions are causing individuals to see the weather events in a manner consistent with those opinions. Notably, the relationship between weather experiences and beliefs regarding climate change appear to be multidirectional in nature. Numerous studies have found that not only do weather experiences shape the views of individuals regarding global warming, but also individuals’ views on the existence of global warming can affect their perceptions of the weather that they have experienced. In particular, recent research has shown that individuals who are skeptical about the existence of global warming are less likely to report the weather recorded in their area accurately than individuals who believe global warming is happening.


2021 ◽  
Vol 11 (9) ◽  
pp. 3972
Author(s):  
Azin Velashjerdi Farahani ◽  
Juha Jokisalo ◽  
Natalia Korhonen ◽  
Kirsti Jylhä ◽  
Kimmo Ruosteenoja ◽  
...  

The global average air temperature is increasing as a manifestation of climate change and more intense and frequent heatwaves are expected to be associated with this rise worldwide, including northern Europe. Summertime indoor conditions in residential buildings and the health of occupants are influenced by climate change, particularly if no mechanical cooling is used. The energy use of buildings contributes to climate change through greenhouse gas emissions. It is, therefore, necessary to analyze the effects of climate change on the overheating risk and energy demand of residential buildings and to assess the efficiency of various measures to alleviate the overheating. In this study, simulations of dynamic energy and indoor conditions in a new and an old apartment building are performed using two climate scenarios for southern Finland, one for average and the other for extreme weather conditions in 2050. The evaluated measures against overheating included orientations, blinds, site shading, window properties, openable windows, the split cooling unit, and the ventilation cooling and ventilation boost. In both buildings, the overheating risk is high in the current and projected future average climate and, in particular, during exceptionally hot summers. The indoor conditions are occasionally even injurious for the health of occupants. The openable windows and ventilation cooling with ventilation boost were effective in improving the indoor conditions, during both current and future average and extreme weather conditions. However, the split cooling unit installed in the living room was the only studied solution able to completely prevent overheating in all the spaces with a fairly small amount of extra energy usage.


2020 ◽  
Vol 9 (3) ◽  
pp. 27-43
Author(s):  
Nikola Fabris

AbstractFighting climate change is one of the biggest challenges in the 21st century. Climate change that leads to global warming has been increasingly visible in our environment. Extreme weather conditions such as hurricanes, floods, and droughts have been escalating and their acceleration can be expected in the future. They cause changes in sea levels, epidemics, large fires, etc. Increasingly, we are witnessing minor or major damage caused by these extreme weather conditions. Numerous studies have proven that climate change has negative impact on economic growth and prosperity. However, this paper starts from the premise that in addition to unequivocally identified threats, climate change also creates opportunities.The paper reaches a conclusion that climate change can adversely affect balance sheets of financial institutions. Therefore, climate change is a source of financial risk and thus a part of the mandate of central banks and supervisors in preserving financial stability. This type of risk has not been given enough attention by either supervisors or financial institutions over the past period. This paper develops a model for managing financial risks as a result of climate change.


2020 ◽  
Vol 12 (3) ◽  
pp. 435-452 ◽  
Author(s):  
Nadine Fleischhut ◽  
Stefan M. Herzog ◽  
Ralph Hertwig

AbstractAs climate change unfolds, extreme weather events are on the rise worldwide. According to experts, extreme weather risks already outrank those of terrorism and migration in likelihood and impact. But how well does the public understand weather risks and forecast uncertainty and thus grasp the amplified weather risks that climate change poses for the future? In a nationally representative survey (N = 1004; Germany), we tested the public’s weather literacy and awareness of climate change using 62 factual questions. Many respondents misjudged important weather risks (e.g., they were unaware that UV radiation can be higher under patchy cloud cover than on a cloudless day) and struggled to connect weather conditions to their impacts (e.g., they overestimated the distance to a thunderstorm). Most misinterpreted a probabilistic forecast deterministically, yet they strongly underestimated the uncertainty of deterministic forecasts. Respondents with higher weather literacy obtained weather information more often and spent more time outside but were not more educated. Those better informed about climate change were only slightly more weather literate. Overall, the public does not seem well equipped to anticipate weather risks in the here and now and may thus also fail to fully grasp what climate change implies for the future. These deficits in weather literacy highlight the need for impact forecasts that translate what the weather may be into what the weather may do and for transparent communication of uncertainty to the public. Boosting weather literacy may help to improve the public’s understanding of weather and climate change risks, thereby fostering informed decisions and mitigation support.


2021 ◽  
Author(s):  
Orestis Stavrakidis-Zachou ◽  
Konstadia Lika ◽  
Panagiotis Anastasiadis ◽  
Nikos Papandroulakis

Abstract Finfish aquaculture in the Mediterranean Sea faces increasing challenges due to climate change while potential adaptation requires a robust assessment of the arising threats and opportunities. This paper presents an approach developed to investigate effects of climate drivers on Greek aquaculture, a representative Mediterranean country with a leading role in the sector. Using a farm level approach, Dynamic Energy Budget models for European seabass and meagre were developed and environmental forcing was used to simulate changes in production and farm profitability under IPCC scenarios RCP45 and RCP85. The effects of temperature and extreme weather events at the individual and farm level were considered along with that of husbandry parameters such as stocking timing, market size, and farm location (inshore, offshore) for nine regions. The simulations suggest that at the individual level fish may benefit from warmer temperatures in the future in terms of growth, thus reaching commercial sizes faster, while the husbandry parameters may have as large an effect on growth as the projected shifts in climatic cues. However, this benefit will be largely offset by the adverse effects of extreme weather events at the population level. Such events will be more frequent in the future and, depending on the intensity one assigns to them, they could cause losses in biomass and farm profits that range from mild to detrimental for the industry. Overall, these results provide quantification of some of the potential threats for an important aquaculture sector while suggesting possibilities to benefit from emerging opportunities. Therefore, they could contribute to improving the sector’s readiness for tackling important challenges in the future.


2009 ◽  
Vol 39 (12) ◽  
pp. 2369-2380 ◽  
Author(s):  
Héloïse Le Goff ◽  
Mike D. Flannigan ◽  
Yves Bergeron

The main objective of this paper is to evaluate whether future climate change would trigger an increase in the fire activity of the Waswanipi area, central Quebec. First, we used regression analyses to model the historical (1973–2002) link between weather conditions and fire activity. Then, we calculated Fire Weather Index system components using 1961–2100 daily weather variables from the Canadian Regional Climate Model for the A2 climate change scenario. We tested linear trends in 1961–2100 fire activity and calculated rates of change in fire activity between 1975–2005, 2030–2060, and 2070–2100. Our results suggest that the August fire risk would double (+110%) for 2100, while the May fire risk would slightly decrease (–20%), moving the fire season peak later in the season. Future climate change would trigger weather conditions more favourable to forest fires and a slight increase in regional fire activity (+7%). While considering this long-term increase, interannual variations of fire activity remain a major challenge for the development of sustainable forest management.


2018 ◽  
Vol 10 (1) ◽  
pp. 78-88 ◽  
Author(s):  
Jian Sha ◽  
Zhong-Liang Wang ◽  
Yue Zhao ◽  
Yan-Xue Xu ◽  
Xue Li

Abstract The vulnerability of the natural water system in cold areas to future climate change is of great concern. A coupled model approach was applied in the headwater watershed area of Yalu River in the northeastern part of China to estimate the response of hydrological processes to future climate change with moderate data. The stochastic Long Ashton Research Station Weather Generator was used to downscale the results of general circulation models to generate synthetic daily weather series in the 2050s and 2080s under various projected scenarios, which were applied as input data of the Generalized Watershed Loading Functions hydrological model for future hydrological process estimations. The results showed that future wetter and hotter weather conditions would have positive impacts on the watershed runoff yields but negative impacts on the watershed groundwater flow yields. The freezing period in winter would be shortened with earlier snowmelt peaks in spring. These would result in less snow cover in winter and shift the monthly allocations of streamflow with more yields in March but less in April and May, which should be of great concern for future local management. The proposed approach of the coupled model application is effective and can be used in other similar areas.


2020 ◽  
Author(s):  
Hao-wei Wey ◽  
Kim Naudts ◽  
Julia Pongratz ◽  
Julia Nabel ◽  
Lena Boysen

<p>The Amazon forests are one of the largest ecosystem carbon pools on Earth. While more frequent and prolonged droughts have been predicted under future climate change there, the vulnerability of Amazon forests to drought has yet remained largely uncertain, as previous studies have shown that few land surface models succeeded in capturing the vegetation responses to drought. In this study, we present an improved version of the land surface model JSBACH, which incorporates new formulations of leaf phenology and litter production based on intensive field measurement from the artificial drought experiments in the Amazon. Coupling the new JSBACH with the atmospheric model ECHAM, we investigate the drought responses of the Amazon forests and the resulting feedbacks under RCP8.5 scenario. The climatic effects resulted from (1) direct effects including declining soil moisture and stomatal responses, and (2) soil moisture-induced canopy responses are separated to give more insights, as the latter was poorly simulated. Preliminary results show that for net primary production and soil respiration, the direct effects and canopy responses have similar spatial patterns with the magnitude of the latter being 1/5 to 1/3 of the former. In addition, declining soil moisture enhances rainfall in Northern Amazon and suppresses rainfall in the south, while canopy responses have negligible effects on rainfall. Based on our findings, we suggest cautious interpretation of results from previous studies. To address this uncertainty, better strategy in modeling leaf phenology such as implemented in this study should be adopted.</p>


Author(s):  
Annie Rajoria ◽  
Amit Khandelwal ◽  
Narendra Kohli

<p>In today's world, with the rapid growth in industries in every sector, the environment is at stake without the implementation<br />of environment friendly practices. However, with the rising prices and climate change, the public and corporate companies<br />are keen to follow eco friendly measures which will not only conserve energy but also help to sustain balance in the<br />environment. In this paper, we have presented such measures to be practiced at the individual level. Green computing<br />refers to the ways in which energy consumption can be reduced, more recyclable products can be manufactured and the<br />adverse impact on the environment can be diminished. The study and practice of using computing resources efficiently by<br />the individuals or computer users can be termed as 'individual green computing'. The key to 'individual green computing' is<br />the creation of awareness at the student as well as the college level about the significance of their pivotal role in this eco<br />friendly initiative.</p>


2020 ◽  
Vol 70 (1) ◽  
pp. 120
Author(s):  
Andrew J. Dowdy

Spatio-temporal variations in fire weather conditions are presented based on various data sets, with consistent approaches applied to help enable seamless services over different time scales. Recent research on this is shown here, covering climate change projections for future years throughout this century, predictions at multi-week to seasonal lead times and historical climate records based on observations. Climate projections are presented based on extreme metrics with results shown for individual seasons. A seasonal prediction system for fire weather conditions is demonstrated here as a new capability development for Australia. To produce a more seamless set of predictions, the data sets are calibrated based on quantile-quantile matching for consistency with observations-based data sets, including to help provide details around extreme values for the model predictions (demonstrating the quantile matching for extremes method). Factors influencing the predictability of conditions are discussed, including pre-existing fuel moisture, large-scale modes of variability, sudden stratospheric warmings and climate trends. The extreme 2019–2020 summer fire season is discussed, with examples provided on how this suite of calibrated fire weather data sets was used, including long-range predictions several months ahead provided to fire agencies. These fire weather data sets are now available in a consistent form covering historical records back to 1950, long-range predictions out to several months ahead and future climate change projections throughout this century. A seamless service across different time scales is intended to enhance long-range planning capabilities and climate adaptation efforts, leading to enhanced resilience and disaster risk reduction in relation to natural hazards.


Sign in / Sign up

Export Citation Format

Share Document