fledging success
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 20)

H-INDEX

23
(FIVE YEARS 2)

Birds ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 427-444
Author(s):  
Sonia Kleindorfer ◽  
Lauren K. Common ◽  
Petra Sumasgutner

When different introduced species across trophic levels (parasite, predator) invade island systems, they may pose significant threats to nesting birds. In this study, we measure nesting height and infer causes of offspring mortality in the critically endangered Medium Tree Finch (Camarhynchus pauper), an island endemic restricted to Floreana Island on the Galápagos Archipelago. Considering all nests at which a male built a nest, sang and attempted to attract a female (n = 222 nests), only 10.4% of nests produced fledglings (5% of nests had total fledging success, 5.4% of nests had partial fledging success). Of the 123 nests chosen by a female, 18.7% produced fledglings and of 337 eggs laid, 13.4% produced fledglings. Pairing success was higher for older males, but male age did not predict nesting success. All nests with chicks were infested with avian vampire fly larvae (Philornis downsi). We attributed the cause of death to avian vampire fly if chicks were found dead in the nest with fly larvae or pupae (45%) present. We inferred avian (either Asio flammeus galapagoensis or Crotophaga ani) predation (24%) if the nest was empty but dishevelled; and black rat (Rattus rattus) predation (20%) if the nest was empty but undamaged. According to these criteria, the highest nests were depredated by avian predators, the lowest nests by rats, and intermediate nests failed because of avian vampire fly larvae. In conclusion, there is no safe nesting height on Floreana Island under current conditions of threats from two trophic levels (introduced parasitic dipteran, introduced mammalian/avian predators; with Galápagos Short-Eared Owls being the only native predator in the system).


2021 ◽  
Vol 29 (2) ◽  
pp. 107-121
Author(s):  
Kevin B. Briggs ◽  
Mark C. Mainwaring

Abstract Nestboxes are widely provided as nesting sites for hole-nesting birds, yet the relative contribution of nestbox characteristics and habitat quality in determining the occupancy rates and breeding success of birds remains unclear. We provided nestboxes in deciduous woodlands in England and examined if those nestboxes were erected in random orientations and whether the orientation of nestboxes and habitat quality, in the form of tree density, influenced their occupation by, and breeding success of, Blue Tits (Cyanistes caeruleus), Great Tits (Parus major) and Pied Flycatchers (Ficedula hypoleuca). We found that first, the nestboxes were erected non-randomly orientated towards the north and east, and away from the south and west. Second, the occupation rates of none of the species was related to nestbox orientation or tree density. Third, the breeding success of neither Blue Tits nor Great Tits varied with tree density but did vary with nestbox orientation. Blue Tit hatching success and fledging success was higher in nestboxes facing south than in other directions whilst in Great Tits, clutch sizes, hatching success and fledging success was higher in nestboxes facing south than nestboxes facing other directions. Our results suggest that nestbox characteristics, such as orientation, have more influence on the reproductive success of passerines than habitat quality. This further suggests that conservationists should orientate nestboxes southwards in order to maximise their benefit to birds in temperate climates during the breeding season.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Didone Frigerio ◽  
Petra Sumasgutner ◽  
Kurt Kotrschal ◽  
Sonia Kleindorfer ◽  
Josef Hemetsberger

AbstractLocal weather conditions may be used as environmental cues by animals to optimize their breeding behaviour, and could be affected by climate change. We measured associations between climate, breeding phenology, and reproductive output in greylag geese (Anser anser) across 29 years (1990–2018). The birds are individually marked, which allows accurate long-term monitoring of life-history parameters for all pairs within the flock. We had three aims: (1) identify climate patterns at a local scale in Upper Austria, (2) measure the association between climate and greylag goose breeding phenology, and (3) measure the relationship between climate and both clutch size and fledging success. Ambient temperature increased 2 °C across the 29-years study period, and higher winter temperature was associated with earlier onset of egg-laying. Using the hatch-fledge ratio, average annual temperature was the strongest predictor for the proportion of fledged goslings per season. There is evidence for an optimum time window for egg-laying (the earliest and latest eggs laid had the lowest fledging success). These findings broaden our understanding of environmental effects and population-level shifts which could be associated with increased ambient temperature and can thus inform future research about the ecological consequences of climate changes and reproductive output in avian systems.


2021 ◽  
Author(s):  
Daniel Roy Garrett ◽  
Fanie Pelletier ◽  
Dany Garant ◽  
Marc Bélisle

Climate change predicts the increased frequency, duration, and intensity of inclement weather periods, such as unseasonably low temperatures and prolonged precipitation. Many migratory species have advanced the phenology of important life history stages, and as a result are likely exposed to these periods of inclement spring weather more often, thus risking reduced fitness and population growth. For declining avian species, including aerial insectivores, anthropogenic landscape changes such as agricultural intensification are another driver of population declines. These landscape changes may affect the foraging ability of food provisioning parents, as well as reduce the probability a nestling will survive periods of inclement weather, through for example pesticide exposure impairing thermoregulation and punctual anorexia. Breeding in agro-intensive landscapes may thus exacerbate the negative effects of inclement weather under climate change. We used daily temperatures related to significant reductions of insect prey availability (cold snaps), combined with measures of precipitation, and assessed their impact on Tree Swallow (Tachycineta bicolor) fledging success, a declining aerial insectivore breeding across a gradient of agricultural intensification. Fledging success decreased with the number of cold snap days experienced by a brood, and this relationship was worsened during periods of prolonged precipitation. We further found the overall negative effects of experiencing periods of inclement weather are exacerbated in more agro-intensive landscapes. Our results indicate that two of the primary hypothesized drivers of many avian population declines may interact to further increase the rate of declines in certain landscape contexts.


Author(s):  
Prashant Ghimire ◽  
Saroj Panthi ◽  
Krishna Bhusal ◽  
Matthew Low ◽  
Nabin Pandey ◽  
...  

Background: Asian Woollyneck Ciconia episcopus is large wading bird whose conservation status has been recently down-listed, despite a lack of general knowledge on its nesting ecology and breeding success. Thus, in this study we conducted the most comprehensive survey on the nesting ecology of this species to date. Methods: We located 39 nesting sites across 18 districts of Nepal and recorded nest tree characteristics for the nine tree species they nested in. We also used Maxent modelling to further understand factors important for nesting habitat suitability and to identify new areas for future surveys. Results: They most commonly nested in Simal Bombax ceiba (n =21), followed by Sal Shorea robusta (n=6) and Salla Pinus roxburghii (n=4). The mean height of the nesting tree, nest height and tree diameter were 29.8 ± 5.8m (±SD), 1.03 ± 0.35m & 25.3 ± 5.8 m respectively. Nesting and fledging success were additionally recorded from 31 nesting attempts at 19 of these nesting sites between 2016 and 2020. Woollyneck had an estimated nesting success probability of 0.81 ± 0.07 and a mean fledging success of 1.94 ± 0.25 (±SE) chicks per nest. MaxEnt modelling identified a total potential suitable nesting habitat area of 9.64 % (14228km2) of total area in Nepal, with this located within 72 districts (out of 77), mostly in the western part of Nepal. The modelling parameters suggest that slope, land-use, precipitation and forest were important determinants of nesting habitat suitability. Conclusions: The most likely district reported by the model for Woollyneck nesting habitat has not previously reported nests which suggests additional survey effort in this region is warranted. We recommend that priority should be given to conserve taller trees close to settlements and cropland, and future studies should consider the potential impact of climate change on nesting suitability of this species.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Aymen Nefla ◽  
Ridha Ouni ◽  
Slaheddine Selmi ◽  
Saïd Nouira

Abstract Background The Maghreb Magpie (Pica mauritanica) is an endemic North African species. Available knowledge on this species is limited to historic descriptive data with no ecological information provided. Populations continue to dramatically decline in Tunisia, where only one relic population survives. Investigating the breeding biology of this species is essential for conservation purposes. The purpose of this study was to increase our understanding of the Tunisian relic population and provide detailed data on breeding biology over two breeding seasons (2017 and 2018). Methods This study occurred on a private farm of 650 ha, located 10 km from Dhorbania village at Kairouan Governorate, in central Tunisia. Active nests were monitored weekly during egg laying period and twice a week during hatching period. The Ivlev’s electivity index was used to assess whether the frequency of use of nesting trees and bushes matched their availability in the study area. We recorded nest measurements and positions, and compared them using Wilcoxon signed-rank test. Variations of breeding parameters as number of eggs laid, hatchlings, and fledglings over years were performed using Mann–Whitney U-test and χ2 tests. We used a Generalized Linear Mixed Model (GLMM) to investigate how egg volume varied with clutch size and laying date. Results We investigated clutch size, egg size, hatching and fledging success, and evaluated how these parameters varied according to laying date and nest characteristics. Clutch size averaged 5.00 ± 0.19 but was significantly greater in 2017. Hatching success was 2.78 ± 0.34 eggs hatched per nest and fledging success reached 1.69 ± 0.30 young/nest. Causes of nest failure included the depredation of nestlings by shrikes, cobras and rats (e.g. Lanius meridionalis, Naja haje and Rattus rattus), death of parents by the Black-shouldered Kite (Elanus caeruleus) and nest parasitism by the Great Spotted Cuckoo (Clamator glandarius). Clutch size, brood size and fledgling success were unaffected by laying date, nest volume and nest elevation. Egg volume decreased with laying date but was unaffected by clutch. Conclusion Our study provides the first and only detailed data on reproductive parameters of the Maghreb Magpie in its entire geographic range (North Africa). Information gleaned from this study provides valuable information for monitoring and long-term conservation plans of the endangered Tunisian Magpie population. Additionally, our data provide an avenue of large-scale comparative studies of the reproductive ecology of the magpie complex.


2021 ◽  
Author(s):  
Emily M. Tompkins ◽  
David J. Anderson

ABSTRACTAge and environment are important determinants of reproductive parameters in long-lived organisms. These factors may interact to determine breeding responses to environmental change, yet few studies have examined the environmental-dependence of aging patterns across the entire lifespan. We do so, using a 20-year longitudinal dataset of reproductive phenotypes in long-lived female Nazca boobies (Sula granti), a monogamous seabird breeding in the eastern tropical Pacific. Young and old females may suffer from inexperience and senescence, respectively, and/or practice reproductive restraint. Breeding performance (for breeding participation, breeding date, clutch size, egg volume, and offspring production) was expected to be lower in these age classes, particularly under environmental challenge, in comparison with middle-aged breeders. Sea surface temperature anomalies (SSTA) represented interannual variation in the El Niño-Southern Oscillation (ENSO) and were one proxy for environmental quality (a population count of clutch initiations was a second). Although only females lay eggs, both sexes care for eggs and nestlings, and the male partner’s age, alone or in interaction with female age, was evaluated as a predictor of breeding performance. Middle-aged females performed better than young and old birds for all reproductive traits. Pairing with a young male delayed breeding (particularly for old females) and reduced clutch size, and pairing with an old male reduced offspring production. Challenging environments increased age effects on breeding probability and breeding date across young to middle ages and for offspring production across middle to old ages. However, important exceptions to the predicted patterns for clutch size and fledging success across young to middle ages suggested trade-offs between fitness components may complicate patterns of trait expression across the lifespan. Relationships between breeding participation, environment, and individual quality and/or experience in young females may also contribute to unexpected patterns for clutch size and fledging success, traits expressed only in breeders. Finally, independent of age, breeding responses of female Nazca boobies to the ENSO did not follow expectations derived from oceanic forcing of primary productivity. During El Niño-like conditions, egg-laying traits (clutch size, breeding date) improved but offspring production declined, while La Niña-like conditions were “poor” environments throughout the breeding cycle.


Author(s):  
Daniel R. Garrett ◽  
Fanie Pelletier ◽  
Dany Garant ◽  
Marc Bélisle

AbstractAerial insectivores show worldwide population declines coinciding with shifts in agricultural practices. Increasing reliance on certain agricultural practices, is thought to have led to an overall reduction in insect abundance that negatively effects aerial insectivore fitness. The relationship between prey availability and the fitness of insectivores may thus vary with the extent of agricultural production. It is therefore imperative to quantify the strength and direction of these associations. Here we used data from an 11-year study monitoring the breeding of Tree swallows (Tachycineta bicolor) and the availability of Diptera (their main prey) across a gradient of agricultural intensification in southern Québec, Canada. More specifically, we evaluated the landscape characteristics affecting prey availability, and how this relationship influences the fledging success, the duration of the nestling period, the fledgling body mass and wing length as these variables are known to influence the population dynamics of this species. Diptera availability was greatest within predominately forested landscapes, yet within principally agricultural landscapes, it was greatest within ones dominated by intensive row crops (corn, soybean and wheat), and, counter to our predictions, lowest within those dominated by forage and pasture fields. Of the measured fitness proxies, only fledging success was positively related to prey availability. The impact of prey availability varied across the agricultural gradient as fledging success improved with increasing prey levels within forage landscapes yet declined in more agro-intensive landscapes. Finally, once conditioning on prey availability, fledging success was lowest, nestling periods were the longest, and wing length of fledglings were shortest within more agro-intensive landscapes. Our results highlight the interacting roles that aerial insect availability and agricultural intensification have on the fitness of aerial insectivores, and by extension how food availability may interact with other aspects of breeding habitats to influence the population dynamics of predators.


The Condor ◽  
2021 ◽  
Author(s):  
Danielle P Williams ◽  
Julian D Avery ◽  
Thomas B Gabrielson ◽  
Margaret C Brittingham

Abstract Natural gas compressor stations emit loud, low-frequency noise that travels hundreds of meters into undisturbed habitat. We used experimental playback of natural gas compressor noise to determine whether and how noise influenced settlement decisions and reproductive output as well as when in the nesting cycle birds were most affected by compressor noise. We established 80 nest boxes to attract Eastern Bluebirds (Sialia sialis) and Tree Swallows (Tachycineta bicolor) to locations where they had not previously nested and experimentally introduced shale gas compressor noise to half the boxes while the other 40 boxes served as controls. Our experimental design allowed us to control for the confounding effects of both physical changes to the environment associated with compressor stations as well as site tenacity or the tendency for birds to return to the specific locations where they had previously bred. We incorporated behavioral observations with video cameras placed within boxes to determine how changes in behavior might lead to any noted changes in fitness. Neither species demonstrated a preference for box type (quiet or noisy), and there was no difference in clutch size between box types. In both species, we observed a reduction in incubation time, hatching success, and fledging success (proportion of all eggs that fledged) between quiet and noisy boxes but no difference in provisioning rates. Nest success (probability of fledging at least one young; calculated from all nests that were initiated) was not affected by noise in either species suggesting that noise did not increase rates of either depredation or abandonment but instead negatively impacted fitness through reduced hatching and fledging success. Compressor noise caused behavioral changes that led to reduced reproductive success; for Eastern Bluebirds and Tree Swallows, gas infrastructure can create an equal-preference ecological trap where birds do not distinguish between lower and higher quality territories even when they incur fitness costs.


2021 ◽  
Author(s):  
Martha Sander ◽  
Dan Chamberlain ◽  
Camille Mermillon ◽  
Riccardo Alba ◽  
Susanne Jähnig ◽  
...  

Abstract A steady advance in the onset of spring is one of the most prominent footprints of climate warming and requires organisms, including migratory birds, to adapt their annual routines. As lower trophic levels typically adapt faster than higher trophic levels, observations of reduced fitness due to trophic mismatches are becoming more frequent, especially in long-distance migratory birds. We aimed to identify key phenological events, and quantify potential mismatches and their consequences in a migratory songbird population of the Northern wheatear (Oenanthe oenanthe) breeding at high elevations in the European Alps.We used light-level geolocators to track wheatears, and collected information on individual breeding activity and breeding success as well as environmental conditions during the reproductive season. In addition, we used citizen science data and remote sensed images to quantify longer term phenological trends.Snow melt and green-up showed an exceptionally early spring in the study region in 2020, preceded by a relatively average year in 2019. Yet, tracked individuals arrived well before the snowmelt in 2020 and clutch initiation dates across the population were earlier in 2020 compared to 2019. However, this shift lagged behind the advance in environmental conditions. While hatching success was similar in both years, fledging success and overall nest success was significantly reduced in 2020.Our results show that, despite the timely arrival at the breeding grounds, wheatears did not advance breeding activities in synchrony with environmental conditions during the exceptionally early year in 2020. The reduced fledging success suggests a trophic mismatch. However, the underlying mechanisms for hatchling mortality and nest failure remain unknown. Earlier reproductive seasons are expected to become more frequent in the future. We show that the negative effects of changing seasons in Alpine migratory birds might be similar to birds breeding at high latitudes, despite their shorter migratory distance.


Sign in / Sign up

Export Citation Format

Share Document