scholarly journals Influence of immunomodulators of viral or bacterial origin and vaccine against Aujeszky’s disease on the proportion of peripheral blood B cells in growing pigs

2021 ◽  
Vol 53 (3) ◽  
Author(s):  
Irena Žarković ◽  
Svjetlana Terzić ◽  
Luka Cvetnić ◽  
Miroslav Benić ◽  
Andreja Jungić ◽  
...  

The consequences of infection by Suid herpesvirus type 1 (SuHV-1) that causes Aujeszky’s disease (AD) are well studied, however, the effects of immunomodulators (IMs) of microbial origin (viral and bacterial) when administered solely or in combination with the attenuated SuHV-1 vaccine are less known. The effects of parenteral administration of IMs, inactivated Parapoxvirus ovis (P. ovis) or a combination of inactivated Propionibacterium granulosum (P. granulosum) and detoxified Escherichia coli lipopolysaccharide (LPS) and attenuated SuHV-1, strain Bartha, on the proportion of peripheral blood CD3- CD21+ B cells were analysed in 30 crossbred, 3-month old pigs using flow cytometry (FCM). Specific antibodies for gE and gB of SuHV- 1 were detected using the enzyme-linked immunosorbent assay (ELISA). Data were compared among six experimental groups: (1) pigs that separately received the vaccine, (2) IM of bacterial origin, (3) IM of viral origin, (4) simultaneous administration of the vaccine and bacterial IM, (5) simultaneous administration of the vaccine and viral IM, and (6) the control group of untreated pigs. Comparison of B cell proportions and the detection of specific antibodies in blood samples of vaccinated pigs on Day 11 of the experiment showed a transient decrease in B cell contents, though this could not be assumed to be related since the control group showed a decrease in B cell proportion on the same day. The results showed that the use of IMs alone or in combination with the attenuated SuHV-1 vaccine did not have a significant impact on the proportion of peripheral blood B cells in growing pigs.

2018 ◽  
Vol 48 (2) ◽  
pp. 70
Author(s):  
J. C. PAPATSAS (I.K. ΠΑΠΑΤΣΑΣ) ◽  
S. C. KYRIAKIS (Σ.Κ. ΚΥΡΙΑΚΗΣ) ◽  
O. PAPADOPOULOS (ΠΑΠΑΔΟΠΟΥΛΟΣ Ο.) ◽  
K. SARRIS (Κ. ΣΑΡΡΗΣ) ◽  
S. LEKKAS (Σ. ΛΕΚΚΑΣ)

In this trial study, the effect of the vaccination of growing/fattening pigs against Aujeszky's disease virus (ADV) was investigated, in a farm placed in an endemic to ADV area. Three different trial groups of 11-week old growing pigs were vaccinated either once or twice or left unvaccinated. Comparisons between groups were made with respect to growth parameters, carcass quality, as well as pathological and bacteriological findings. All vaccinated animals had significantly better growth performance and carcass quality in comparison to the unvaccinated group, while no significant differences were observed between once and twice vaccinated animals. Lower lungs' affection due to secondary pathogens was also observed in vaccinated groups when compared with the control group of pigs. Bacteriological examination revealed that the frequency of secondary pulmonary bacterial infections, such as Streptococcus suis and Pasteurella multocida was lower in vaccinated pigs compared to controls. It was concluded that single and probably double vaccination against ADV may improve growth performance and carcas quality and may reduce lung affection due to certain secondary pathogens, under the management conditions of the trial farm.


1985 ◽  
Vol 161 (3) ◽  
pp. 547-562 ◽  
Author(s):  
F Emmrich ◽  
B Schilling ◽  
K Eichmann

The immune response to the group-specific carbohydrate of group A streptococci (A-CHO) provides an informative in vitro model for the investigation of several aspects of human anticarbohydrate immune responses. A-CHO-specific B cells can be polyclonally activated by pokeweed mitogen (PWM), and, specifically, by in vitro immunization with streptococcal vaccine. High levels of A-CHO-specific antibodies, mainly directed to the immunodominant side chain N-acetyl-D-glucosamine (GlcNAc), occur in healthy adult individuals. Serum antibody levels are reflected in high frequencies of precursor B cells among peripheral blood lymphocytes. In one particular case, greater than 15% of all B cells activated by PWM for IgM production were found to produce IgM anti-A-CHO antibodies, as determined in limiting dilution experiments, as well as by analyzing Ig concentrations in bulk culture experiments. The case with the lowest proportion observed had 0.3% A-CHO-specific B cells among IgM-producing B cells. Preferential PWM activation of anti-A-CHO-producing B cells could be excluded. The comparison of the proportions of anti-A-CHO IgM produced in vivo, and of B cells producing antibodies of this specificity in peripheral blood, suggests a similar distribution of specific precursor B cells in the antibody-producing lymphoid tissue compartments and in peripheral blood. However, nearly all specific antibodies produced in vitro belong to the IgM isotype, whereas IgG anti-A-CHO in high amounts, mostly exceeding the specific IgM, was found only among anti-A-CHO antibodies produced in vivo. Low anti-A-CHO IgG production was seen in polyclonally activated as well as in antigen-activated cultures, whereas, in contrast, total IgG was produced in considerable amounts after polyclonal activation. This suggests a different distribution pattern, and/or diverse differentiation requirements for anti-A-CHO-producing B cells, compared with other B cell species.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3172-3172
Author(s):  
Tianshu Yu ◽  
Lingjun Wang ◽  
Xiaofei Ni ◽  
Yu Hou ◽  
Xinguang Liu ◽  
...  

Abstract Background: Primary immune thrombocytopenia (ITP) is the most common autoimmune hemorrhagic disorder characterized by decreased platelet count. increased risk of bleeding, and poor quality of life. Only about 70% patients response to first-line treatments, some patients are still refractory or relapsed after combined therapies, therefore it is necessary to explore new therapeutic targets. Bruton's tytosine kinase (BTK) is a non-receptor tyrosine kinase of Tec family, which is widely expressed in hematopoietic cells including B cells, monocytes/macrophages, and others. BTK participates in a variety of signaling pathways of innate and adaptive immunity, and plays an important role in cell survival and maturation. Platelet destruction mediated by anti-platelet glycoprotein antibodies is considered to be the main cause of ITP. B cells differentiate into plasma cells and produce autoantibodies due to the intolerance to autoantigens, which are important effectors in the pathogenesis of ITP. We speculated that inhibition of BTK may reduce platelet destruction by inhibiting B cell activation and autoantibody production. Orelabrutinib is a new generation of BTK inhibitor which has been used in hematological malignancies, this is the first study to explore the mechanisms of BTK inhibitor in the treatment of ITP. Methods: The concentrations of orelabrutinib were set at 1 nM, 10 nM, 100 nM and 1 μM in the in vitro study. Peripheral blood mononuclear cells (PBMCs) were isolated from active ITP patients and healthy controls and cultured for 72 hours, the apoptosis rate of PBMCs in each group was measured by Annexin V/PI double staining. CD19 + B cells of ITP patients were sorted by magnetic beads and stimulated with anti-human IgM to evaluate the activation of B-cell receptor (BCR) pathway and differentiation of plasma cells, respectively. Further, we transfused the splenocytes of immunized CD61-KO mice (C57BL/6) into the severe combined immunodeficient (SCID) mice to establish the active ITP murine models. Orelabrutinib was administered intragastrically at 10mg/kg, once a day. The control group was treated with 0.5% CMC at the same volume and frequency. Platelet count was measured weekly, the peripheral blood was collected and the B cell subsets in spleen were detected by flow cytometry at days 28 after splenocyte transfusion. Results: The proportion of early apoptotic cells (Annexin V +PI -) in PBMCs from both ITP patients and healthy controls was increased by orelabrutinib at 1μM,but there was no statistical difference. Orelabrutinib significantly inhibited the expression of CD69 in a dose-dependent manner at the concentrations of 10nM, 100nM and 1μM. Another early activation marker of BCR signaling pathway, CD86, was also found to be inhibited by orelabrutinib at 100nM and 1μM. The number of CD138 + plasma cells was decreased after treated with orelabrutinib at 10nM, 100nM and 1μM without dose-dependent manner. In the murine models, mice administered with orelabrutinib had significantly higher platelet count than the control mice at days 7, 14, 28 after splenocyte transfusion. The frequency of total B cells in peripheral blood leukocytes, the proportion of GL-7 + germinal center B cells and plasma cells in splenocytes were all determined to be lower in mice treated with orelabrutinib than the control group, though did not reach the statistical significance. Conculsion: Orelabrutinib could effectively suppress the activation and differentiation of B cells invitro and invivo, thus alleviate the thrombocytopenia in active ITP murine models. It could be the new treatment strategy for refractory/relapsed ITP patients. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Leticia Kuri-Cervantes ◽  
M. Betina Pampena ◽  
Wenzhao Meng ◽  
Aaron M. Rosenfeld ◽  
Caroline A.G. Ittner ◽  
...  

AbstractAlthough critical illness has been associated with SARS-CoV-2-induced hyperinflammation, the immune correlates of severe COVID-19 remain unclear. Here, we comprehensively analyzed peripheral blood immune perturbations in 42 SARS-CoV-2 infected and recovered individuals. We identified broad changes in neutrophils, NK cells, and monocytes during severe COVID-19, suggesting excessive mobilization of innate lineages. We found marked activation within T and B cells, highly oligoclonal B cell populations, profound plasmablast expansion, and SARS-CoV-2-specific antibodies in many, but not all, severe COVID-19 cases. Despite this heterogeneity, we found selective clustering of severe COVID-19 cases through unbiased analysis of the aggregated immunological phenotypes. Our findings demonstrate broad immune perturbations spanning both innate and adaptive leukocytes that distinguish dysregulated host responses in severe SARS-CoV-2 infection and warrant therapeutic investigation.One Sentence SummaryBroad immune perturbations in severe COVID-19


2014 ◽  
Vol 17 (3) ◽  
pp. 421-426 ◽  
Author(s):  
B. Tokarz-Deptuła ◽  
P. Niedźwiedzka-Rystwej ◽  
B. Hukowska-Szematowicz ◽  
M. Adamiak ◽  
A. Trzeciak-Ryczek ◽  
...  

Abstract In Poland, rabbit is a highly valued animal, due to dietetic and flavour values of its meat, but above all, rabbits tend to be commonly used laboratory animals. The aim of the study was developing standards for counts of B-cells with CD19+ receptor, T-cells with CD5+ receptor, and their subpopulations, namely T-cells with CD4+, CD8+ and CD25+ receptor in the peripheral blood of mixed-breed Polish rabbits with addition of blood of meet breeds, including the assessment of the impact of four seasons of the year and animal sex on the values of the immunological parameters determined. The results showed that the counts of B- and T-cells and their subpopulations in peripheral blood remain within the following ranges: for CD19+ B-cells: 1.05 - 3.05%, for CD5+ T-cells: 34.00 - 43.07%, CD4+ T-cells: 23.52 - 33.23%, CD8+ T-cells: 12.55 - 17.30%, whereas for CD25+ T-cells: 0.72 - 2.81%. As it comes to the season of the year, it was observed that it principally affects the values of CD25+ T-cells, while in the case of rabbit sex, more changes were found in females.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 423.2-424
Author(s):  
A. Floudas ◽  
M. Canavan ◽  
T. McGarry ◽  
V. Krishna ◽  
S. Nagpal ◽  
...  

Background:Rheumatoid arthritis (RA) is a progressive erosive autoimmune disease that affects 1% of the world population. Anti-citrullinated protein autoantibodies (ACPA) are routinely used for the diagnosis of RA, however 20-30% of patients are ACPA negative. ACPA status is a delineator of RA disease endotypes with similar clinical manifestation but potentially different pathophysiology. Elucidating the underlying mechanisms of disease pathogenesis could inform a treat to target approach for both ACPA-positive and ACPA-negative RA patients.Objectives:To identify peripheral blood and synovial tissue immune population differences that associate with RA disease endotype.To identify unique RA patient synovial tissue gene signatures and enriched pathways that correlate with ACPA status.Methods:Detailed high dimensionality flow cytometric analysis with supervised and unsupervised algorithm analysis of ACPApos and ACPAneg RA patient peripheral blood and synovial tissue single cell suspensions. Ex vivo peripheral blood and synovial tissue T cell stimulation and cytokine production characterisation. RNAseq analysis with specific pathway enrichment analysis of APCApos and ACPAneg RA patient synovial tissue biopsies.Results:Detailed profiling based on high dimensionality flow cytometric analysis of key peripheral blood and synovial tissue immune populations including B cells, T follicular helper (Tfh) cells, T peripheral helper cells (Tph) and CD4 T cell proinflammatory cytokine responses with supervised and unsupervised algorithm analysis revealed unique RA patient peripheral blood B cell and Tfh cell profiles. ACPApos RA patients were characterised by significantly (*P=0.03) increased frequency of Tfh (CXCR5+CD4+) cells and distinct clustering influenced by increased switched (IgD-CD27+) and DN (IgD-CD27-) memory B cells compared to APCAneg RA patients. Surprisingly synovial tissue B cell subpopulation distribution was similar between ACPAneg and ACPApos RA patients, with significant accumulation of switched and double negative memory B cells, highlighting a key role for specific B cell subsets in both disease endotypes. Interestingly, synovial tissue CD4 T cell proinflammatory cytokine (TNF-α, IFN-γ, IL-2, GM-CSF, IL-17A, IL-22, IL-4) production was markedly different between ACPAneg and APCApos RA patients with hierarchical clustering and PCA analysis revealing endotype specific cytokine profiles with ACPAneg RA patient synovial T cells showing increased TNF-α (P=0.01) expression. RNAseq analysis of RA patient synovial tissue revealed significant disease endotype specific gene signatures with specific enrichment for B cell receptor signalling and T cell specific pathways in ACPApos compared to ACPAneg RA patients. Additionally, significantly different chemokine receptor expression based on RA patient ACPA status was observed with increased CXCR3 (P<0.001), CCR7 (P=0.002), and CCR2 (P=0.004) but decreased CXCR7 (P=0.007) expression in APCApos compared to ACPAneg RA patient synovial biopsies.Conclusion:ACPA status associates with unique synovial tissue immune cell and gene profile signatures highlighting differences in the underlying immunological mechanisms involved, therefore reinforcing the need for a treat to target approach for both endotypes of RA.Figure 1.RNAseq analysis of synovial tissue biopsies revealed specific T cell related pathway enrichment in ACPA positive compared to ACPA negative RA patients (n=50, analysis performed with the DESq2 and pathfindeR pipelines in R).Disclosure of Interests:Achilleas Floudas: None declared, Mary Canavan: None declared, Trudy McGarry Employee of: Novartis, Vinod Krishna Employee of: Janssen, Sunil Nagpal Employee of: Janssen, GSK, Douglas Veale Speakers bureau: Abbvie, Janssen, Novartis, MSD, Pfizer, UCB, Consultant of: Abbvie, Janssen, Novartis, MSD, Pfizer, UCB, Grant/research support from: Janssen, Abbvie, Pfizer, UCB, Ursula Fearon Speakers bureau: Abbvie, Grant/research support from: Janssen, Abbvie, Pfizer, UCB


Blood ◽  
1985 ◽  
Vol 66 (4) ◽  
pp. 824-829
Author(s):  
BS Wilson ◽  
JL Platt ◽  
NE Kay

Several mouse monoclonal IgG antibodies (AB1, AB2, AB3, and AB5) were developed that reacted with a 140,000 mol wt glycoprotein on the surface of cultured RAJI B lymphoid cells. The antibodies reacted with purified normal human peripheral blood B cells and CLL Ig+ B cells and showed specific germinal center and mantle zone staining in tissue sections of secondary lymphoid organs. Immunodepletion studies using 125I surface-labeled Raji cell membrane antigens demonstrated that the antigen identified by AB5 is the same 140,000 mol wt glycoprotein detected by anti-B2 that has recently been shown to react with the C3d fragment or CR2 receptor. (Iida et al: J Exp Med 158:1021, 1983). Addition of the AB series and anti-B2 monoclonal antibodies to cultures of purified human peripheral blood B cells resulted in the uptake of 3H- thymidine at two to six times background control levels provided that irradiated autologous T cells were added to the culture. Stimulation was not evoked by other monoclonal antibodies to B cell surface molecules (ie, B1, BA-1, BA-2, and HLA-DR). Pepsin-generated F(ab')2 fragments of anti-CR2 antibodies were essentially as effective as the intact IgG molecule in stimulating B cells. Induction of B cell proliferation by antibody binding to CR2 suggests that the C3d receptor may have an integral role in regulation of humoral immune response.


2019 ◽  
Author(s):  
Magalí C. Girard ◽  
Gonzalo R. Acevedo ◽  
Micaela S. Ossowski ◽  
Paula B. Alcaráz ◽  
Marisa Fernández ◽  
...  

ABSTRACTThe cardiomyopathy developed by patients with chronic Chagas disease (CCD), one of the most severe consequences of T. cruzi infection, is mainly associated with an imbalance between an excessive inflammatory reaction and a defective immunomodulatory profile cause by host-parasite interaction. Despite the growing importance of the regulatory function of B-cells in many malignancies, few studies have addressed their immunosuppressive role in chronic Chagas disease. In this work, we tackled this issue by studying the proportion of different B cell subpopulations and their capacity to secrete IL-10 in individuals with distinct clinical forms of CCD. Seven-colour flow cytometry was performed to examine the peripheral blood B cell compartment in chronic Chagas disease (CCD) patients with and without cardiac manifestations (n=10 for each group) and non-infected donors (n=9). Peripheral blood mononuclear cells (PBMC) were incubated for 5h with PMA, ionomicyn and brefeldin A. According to the expression of markers CD19, CD24 and CD38, we showed an expansion of total B cell and transitional CD24highCD38high B cell subsets in CCD patients with cardiac involvement compared to non-infected donors. Furthermore, although no differences were observed in the frequency of total IL-10 producing B cells (B10) among the groups, CCD patients with cardiac involvement showed a statistically significant increased proportion of naïve B10 cells and a tendency to an increased frequency of transitional B10 cells compared to non-infected donors. These findings suggest that immature transitional CD24highCD38high B cells are greatly expanded in patients with the cardiac form of chronic Chagas disease and these cells retain their ability to secrete IL-10 compared to non-infected donors. Furthermore, the distribution of naïve, transitional and memory B cells inside the B10 cells followed the same pattern in chronic patients without cardiac involvement and non-infected individuals. Our work provides insight into the phenotypic distribution of regulatory B cell in CCD, an important step towards new strategies to prevent cardiomiopathy associated with T. cruzi infection.


Blood ◽  
1997 ◽  
Vol 89 (12) ◽  
pp. 4415-4424 ◽  
Author(s):  
Jon Lømo ◽  
Heidi Kiil Blomhoff ◽  
Sten Eirik Jacobsen ◽  
Stanislaw Krajewski ◽  
John C. Reed ◽  
...  

Abstract Interleukin-13 (IL-13) is a novel T-cell–derived cytokine with IL-4–like effects on many cell types. In human B lymphocytes, IL-13 induces activation, stimulates proliferation in combination with anti-IgM or anti-CD40 antibodies, and directs Ig isotype switching towards IgE and IgG4 isotypes. We show here that IL-13 also regulates human B-cell apoptosis. IL-13 reduced spontaneous apoptosis of peripheral blood B cells in vitro, as shown by measurement of DNA fragmentation using the TUNEL and Nicoletti assays. The inhibition of cell death by IL-13 alone was significant but modest, but was potently enhanced in combination with CD40 ligand (CD40L), a survival stimulus for B cells by itself. Interestingly, IL-13 increased the expression of CD40 on peripheral blood B cells, providing a possible mechanism for the observed synergy. IL-13 alone was a less potent inhibitor of apoptosis than IL-4. Moreover, there was no additive effect of combining IL-4 and IL-13 at supraoptimal concentrations, which is consistent with the notion that the IL-4 and IL-13 binding sites share a common signaling subunit. The combination of IL-13 with CD40L augmented the expression of the Bcl-2 homologues Bcl-xL and Mcl-1, suggesting this as a possible intracellular mechanism of induced survival. By contrast, levels of Bcl-2, and two other Bcl-2 family members, Bax and Bak, remained unaltered. Given the importance of the CD40-CD40L interaction in B-cell responses, these results suggest a significant role of IL-13 in the regulation of B-cell apoptosis.


Sign in / Sign up

Export Citation Format

Share Document