scholarly journals Potential for year-round forage production in Puerto Rico and St. Croix

1969 ◽  
Vol 89 (3-4) ◽  
pp. 133-148
Author(s):  
Thomas R. Sinclair ◽  
Yoana C. Newman ◽  
María de L. Lugo ◽  
Elide Valencia ◽  
Ann R. Blount

Forage production can vary substantially during the annual cycle in the tropical islands of Puerto Rico and St. Croix. Cool temperatures, low levels of solar radiation, and low rainfall in December and January have been hypothesized to cause decrease in forage growth. A forage growth model was used to simulate yield in different environments in order to examine these hypotheses quantitatively. Weather data were obtained over a period of three to six years from three locations in Puerto Rico and one location in St. Croix. Minimum temperatures were always near or above 20° C and, consequently, did not appear to cause serious losses in forage production. The forage model predicted a decrease in forage production during the winter months due to decreased levels of solar radiation; however, yields were estimated to be approximately 70 to 80% of summer yields. Whereas shallow rooting depth of 45 cm could cause decreased yields in some situations, inadequate rainfall could not explain large yield decreases in winter months. This research indicates that a factor in addition to the ones tested contributes to the loss in winter forage yield. It is speculated that short day lengths directly influence the regulation of plant growth such that forage yield is decreased in winter months. 

2016 ◽  
Vol 9 (2) ◽  
pp. 109-118 ◽  
Author(s):  
Sisuru Sendanayake ◽  
Nandika Miguntanna ◽  
M. T. R. Jayasinghe

There are many correlations developed to predict incident solar radiation at a given location developed based on geographical and meteorological parameters. However, all correlations depend on accurate measurement and availability of weather data such as sunshine duration, cloud cover, relative humidity, maximum and minimum temperatures etc, which essentially is a costly exercise in terms of equipment and labour. Sri Lanka being a tropical island of latitudinal change of only 30 along the length of the country, the meteorological factors govern the amount of incident radiation. Considering the cloud formation and wind patterns over Sri Lanka as well as the seasonal rainfall patterns, it can be observed that the mean number of rainy days can be used to predict the monthly average daily global radiation which can be used for calculations in solar related activities conveniently.


Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 232
Author(s):  
Iraj Emadodin ◽  
Daniel Ernesto Flores Corral ◽  
Thorsten Reinsch ◽  
Christof Kluß ◽  
Friedhelm Taube

The effects of climate change on agricultural ecosystems are increasing, and droughts affect many regions. Drought has substantial ecological, social, and economic consequences for the sustainability of agricultural land. Many regions of the northern hemisphere have not experienced a high frequency of meteorological droughts in the past. For understanding the implications of climate change on grassland, analysis of the long-term climate data provides key information relevant for improved grassland management strategies. Using weather data and grassland production data from a long-term permanent grassland site, our aims were (i) to detect the most important drought periods that affected the region and (ii) to assess whether climate changes and variability significantly affected forage production in the last decade. For this purpose, long-term daily weather data (1961–2019) and the standardized precipitation index (SPI), De Martonne index (IDM), water deficit (WD), dryness index (DI), yield anomaly index (YAI), and annual yield loss index (YL) were used to provide a scientific estimation. The results show that, despite a positive trend in DI and a negative trend in WD and precipitation, the time-series trends of precipitation, WD, and DI indices for 1961–2019 were not significant. Extreme dry conditions were also identified with SPI values less than −2. The measured annual forage yield (2007–2018) harvested in a four-cut silage system (with and without organic N-fertilization) showed a strong correlation with WD (R = 0.64; p ˂ 0. 05). The main yield losses were indicated for the years 2008 and 2018. The results of this study could provide a perspective for drought monitoring, as well as drought warning, in grassland in northwest Europe.


2016 ◽  
Vol 9 (2) ◽  
pp. 109-118 ◽  
Author(s):  
Sisuru Sendanayake ◽  
Nandika Miguntanna ◽  
M. T. R. Jayasinghe

There are many correlations developed to predict incident solar radiation at a given location developed based on geographical and meteorological parameters. However, all correlations depend on accurate measurement and availability of weather data such as sunshine duration, cloud cover, relative humidity, maximum and minimum temperatures etc, which essentially is a costly exercise in terms of equipment and labour. Sri Lanka being a tropical island of latitudinal change of only 30 along the length of the country, the meteorological factors govern the amount of incident radiation. Considering the cloud formation and wind patterns over Sri Lanka as well as the seasonal rainfall patterns, it can be observed that the mean number of rainy days can be used to predict the monthly average daily global radiation which can be used for calculations in solar related activities conveniently.


1969 ◽  
Vol 75 (2) ◽  
pp. 147-152
Author(s):  
Rafael Ramos-Santana ◽  
José E. Rodríguez-Arroyo

The persistence and dry forage production of nine accessions (8 Hemarthrias and one Cynodon) in mob grazing were measured during a 387-day period. During the short day season, accession H. altissima USDAPI 364888 produced the highest dry forage yield, but did not differ significantly (P<.05) from the others except for H. altissima USDAPI 364873 and 364875. During the long-day season, H. altissima USDAPI 364888 again produced the highest dry forage yield, not differing significantly (P<.05) from H. altissima 364873, 364875 and 409744 and C. plectostachyum 341818. For the whole 387-day period, accessions H. altissima USDAPI 364888, 364873 and 409744 and C. plectostachyum 341818 showed excellent yields in terms of consumed forage. However, no significant differences (P<.05) were observed among accessions during the period mentioned. Similarly although no significant differences (P<.05) were observed in terms of weed infestation percentages, accessions H. altissima USDAPI 364875 and C. plectostachyum USDAPI 341818 had higher weed infestation percentage than the other accessions. In terms of leaves to stem ratios C. plectostachyum USDAPI 341818 produced the highest percentages without differing significantly (P<.05) from H. altissima USDAPI 364873 and 379617.


2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 31-31
Author(s):  
Kevin R Meng ◽  
Eric Bailey ◽  
Josh Zeltwanger ◽  
Hannah Allen ◽  
Mikaela Adams ◽  
...  

Abstract Chemical seed-head suppression of endophyte infected tall fescue (Lolium arundinaceum) improves stocker cattle performance but may decrease forage yield. Spring nitrogen application increases tall fescue growth with a concomitant increase in ergot alkaloids, produced by the symbiotic endophyte Epichloë coenophiala. We hypothesized that greater amounts of nitrogen applied to tall fescue would increase forage yield and offset losses in forage production from chemical suppression of seed-heads with metsulfuron without effect on alkaloid concentration. Ninety-six steers (270 ± 20 kg) were randomly assigned to one of sixteen paddocks (1.8 ha) on April 18 and continuously grazed for 57 d. Paddocks were blocked by previous use (n = 4) and randomly assigned to one of four treatments; no metsulfuron, no nitrogen (NEGCON), metsulfuron with 0 (MET0), 67 (MET67), or 134 (MET134) kg/ha of ammonium nitrate, applied March 11. Steers grazing MET0 paddocks were removed 17 d early due to insufficient forage availability. Steer weight, forage yield, forage nutritive value and ergot alkaloids in forage samples were measured monthly. Seed-head frequency and species composition were determined in June. Metsulfuron application reduced (P &lt; 0.01) tall fescue seed-heads by 80%. Metsulfuron decreased (P = 0.03) ergovaline but ergovaline increased (P &lt; 0.01) at each monthly sampling across treatments. Nitrogen had no impact on ergovaline concentration (P = 0.50). Forage yield tended to be least (P = 0.07) for MET0, intermediate for NEGCON and MET67, and tended to be greatest for MET134 (P = 0.08). Steer ADG was not affected by treatment (P &lt; 0.80). Metsulfuron decreased NDF (P=0.02) regardless of fertilization rate. Forage CP increased with fertilization (P &lt; 0.01) and no differences were detected between NEGCON and MET0 (P = 0.45). Species composition was not impacted (P &gt;0.07) by treatment. Metsulfuron decreased seed-head growth and ergovaline concentration in tall fescue. Additional nitrogen fertilizer ameliorated forage yield lost to metsulfuron application but did not impact steer gain.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 802
Author(s):  
Kristian Skeie ◽  
Arild Gustavsen

In building thermal energy characterisation, the relevance of proper modelling of the effects caused by solar radiation, temperature and wind is seen as a critical factor. Open geospatial datasets are growing in diversity, easing access to meteorological data and other relevant information that can be used for building energy modelling. However, the application of geospatial techniques combining multiple open datasets is not yet common in the often scripted workflows of data-driven building thermal performance characterisation. We present a method for processing time-series from climate reanalysis and satellite-derived solar irradiance services, by implementing land-use, and elevation raster maps served in an elevation profile web-service. The article describes a methodology to: (1) adapt gridded weather data to four case-building sites in Europe; (2) calculate the incident solar radiation on the building facades; (3) estimate wind and temperature-dependent infiltration using a single-zone infiltration model and (4) including separating and evaluating the sheltering effect of buildings and trees in the vicinity, based on building footprints. Calculations of solar radiation, surface wind and air infiltration potential are done using validated models published in the scientific literature. We found that using scripting tools to automate geoprocessing tasks is widespread, and implementing such techniques in conjunction with an elevation profile web service made it possible to utilise information from open geospatial data surrounding a building site effectively. We expect that the modelling approach could be further improved, including diffuse-shading methods and evaluating other wind shelter methods for urban settings.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 524
Author(s):  
Jihui Yuan ◽  
Kazuo Emura ◽  
Craig Farnham

The Typical meteorological year (TMY) database is often used to calculate air-conditioning loads, and it directly affects the building energy savings design. Among four kinds of TMY databases in China—including Chinese Typical Year Weather (CTYW), International Weather for Energy Calculations (IWEC), Solar Wind Energy Resource Assessment (SWERA) and Chinese Standard Weather Data (CSWD)—only CSWD is measures solar radiation, and it is most used in China. However, the solar radiation of CSWD is a measured daily value, and its hourly value is separated by models. It is found that the cloud ratio (diffuse solar radiation divided by global solar radiation) of CSWD is not realistic in months of May, June and July while compared to the other sets of TMY databases. In order to obtain a more accurate cloud ratio of CSWD for air-conditioning load calculation, this study aims to propose a method of refining the cloud ratio of CSWD in Shanghai, China, using observed solar radiation and the Perez model which is a separation model of high accuracy. In addition, the impact of cloud ratio on air-conditioning load has also been discussed in this paper. It is shown that the cloud ratio can yield a significant impact on the air conditioning load.


2021 ◽  
Author(s):  
Julissa Rojas-Sandoval ◽  
Pedro Acevedo-Rodríguez

Abstract Genetics: The chromosome number reported for C. dactylon varies from 2n = 18 to 2n = 36 with diploid and polyploid populations (Cook et al., 2005). Ramakrishan and Singh (1966) and Sarandon (1991) have found differences in total biomass and biomass partition according to the origin of the population. Sarandon (1991) points out that characters are highly heritable, which means that high genetic variability for biomass production and variable architecture allows an ample base for selection, which in most cases is induced by herbicides, mechanical control or forage production. Reproductive Biology: C. dactylon is wind-pollinated and generally self-incompatible, suffering from inbreeding depression when genotypes are self-pollinated. Quantitative traits such as seed yield and forage yield can be dramatically negatively affected by inbreeding depression (Cook et al., 2005). In diploid populations, caryopses are formed after zygote formation. In polyploids, which are sterile, caryopses may be apomictic. Physiology: This C4 plant (Kissmann, 1991) has high rates of accumulation under adequate irradiance, water and nutrient supply and may consume 75 kg of N, 20 kg of P and more than 1,500,000 litres of water for 5000 kg/ha of biomass dry matter (Fernandez, 1991). In the south of Santa Fe province, Argentina, a maximum biomass of 8000 kg/ha may be generated under a summer crop of maize or sunflower with >75% located in the first 10 cm of the soil profile (Lombardo, 1973), whereas in Balcarce (Argentina) about 5000 kg/ha is commonly found in maize or sunflower stubble. Phenology: A photoperiod of 13 hours induces flowering. Low night temperatures coupled with high diurnal temperatures induces blooming (Nir and Koller, 1976). A reduction in irradiance drastically decreases inflorescence production (Moreira, 1975). In North America, annual plants reproduce during spring and perennial plants reproduce all year long (USDA-NRCS, 2014). Longevity: C. dactylon grows as both an annual and perennial grass. The annual growth-form becomes dormant and turns brown when nighttime temperatures fall below freezing or average daytime temperatures are below 10°C (Cook et al., 2005). Activity Patterns: Seeds may be the route of invasion in weed-free fields through the faeces of cows (Rodriguez, personal communication). Rhizome biomass exhibits an annual cyclic pattern and, as with any perennial weed, low temperatures reduce biomass and viability is lost as a consequence of the consumption of materials due to respiration and maintenance. The digestibility of stocked material is severely decreased, implying a loss in forage quality (Vaz Martins, 1989). This is a character that has largely improved in cultivated varieties. Each node has a physiological self-governing structure in relation to the apex, but is highly dependent on substances from other plant parts. The mother plant determines the runner growth pattern on the soil surface according to the sugar-gibberellin balance (Montaldi 1970). Node disconnection may be caused by natural decay and cultivation and produces damage in the breakdown zone and changes in hormone and nutrient relationships. It is widely demonstrated that rhizome or runner fragmentation induces the activation of buds. The proportion of activated buds increases as the number of buds per segment decreases (Moreira, 1980; Kigel and Koller, 1985; Fernandez and Bedmar, 1992). The cultivation method is mainly responsible for vegetative propagation fragmentation. The higher the cultivation intensity, the smaller the segments produced (Kigel and Koller, 1985). Population Size and Structure This weed produces an enormous number of small seeds (0.25-0.30 mg), the viability and dormancy of which are highly variable according to genotype and the conditions when formed. The seed is important because it confers high genetic variability on the population. Perez et al. (1995) recorded a very low germination rate. Uygur et al. (1985) obtained up to 15% germination at constant temperatures of 35-40°C, and 50% at temperatures alternating between 20 and 30°C. Moreira (1975) obtained up to 80% germination with the help of nitrate, chilling and alternating temperatures, and Elias (1986) recorded up to 96% germination from heavier samples of seed. Seeds remain viable in the soil for at least 2 years (Caixinhas et al., 1988). As a rule, cultivars have relatively high viability. Osmo-conditioning of Bermuda grass seeds with PEG followed by immediate sowing improved seed germination and seedling growth under saline conditions (Al-Humaid 2002). The probability of emergence and successful establishment of C. dactylon decreases with the depth of the fragment, but increases with the weight of the node and internode (Perez et al., 1998). Growth from plants originated from a runner may exhibit a different biomass partition than that from plants originated from a rhizome (Fernandez, 1986). From sprouting onwards, weed growth is controlled mainly by temperature (optimum 25-30°C) and radiation, but also by humidity and soil fertility. The efficiency of carbohydrate reserve usage during sprout growth is highly dependent on temperature and the type of vegetative structure; it is maximum at 20°C and is higher for rhizomes than for stolons (Satorre et al., 1996). Runners and rhizome growth begins 30 days after growth but only if soil temperature is >15°C. Rates of 15 g/g/day have been recorded in Argentina (Lescano de Ríos, 1982).


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 94-94
Author(s):  
Russell C Carrell ◽  
Sandra L Dillard ◽  
Mary K Mullenix ◽  
Audrey Gamble ◽  
Russ B Muntifering

Abstract Use of cool-season annual cover crops through grazing has been shown to be a potential tool in extending the grazing season, while still mitigating environmental risks associated with warm-season row crop production. Although data describing the effects of grazing on soil health are not novel, effects of grazing length on animal performance and cover crop production are limited. The objective was to determine cattle performance and forage production when grazing a cool-season annual cover-crop. Twelve, 1.2-ha pastures were established in a four species forage mix and randomly allocated to be grazed through either mid-February (FEB), mid-March (MAR), or mid-April (APR) with a non-grazed control (CON). Three tester steers were randomly placed in each paddock and a 1:1 forage allowance was maintained in each paddock using put-and-take steers. Animals were weighed every 30 d for determination of average daily gain (ADG). Forage was harvested bi-weekly and analyzed for forage production, neutral detergent fiber (NDF), and acid detergent fiber (ADF). Fiber fractions were measured using an ANKOM fiber analyzer (ANKOM Tech, Macedon, NY). All data were analyzed using MIXED procedure of SAS version 9.4 (SAS Inst., Cary, NC). Differences in forage mass were detected between CON and FEB (3,694.75 vs. 2,539.68 kg/ha; P &lt; 0.003), CON and MAR (3,694.75 vs. 1,823.45 kg/ha; P &lt; 0.001), and CON and APR (3,694.75 vs. 1,976.23 kg/ha; P &lt; 0.001). Differences in total gain/acre were detected between APR and MAR (212.24 vs. 101.74 kg/ha; P &lt; 0.0001), APR and FEB (212.24 vs 52.65 kg/ha; P &lt; 0.0001), and FEB and MAR (101.74 vs. 52.65 kg/ha; P &lt; 0.003). No differences were detected for tester ADG (1.23 kg/day, P = 0.56), NDF (44.9%, P = 0.99), or ADF (27.2%, P = 0.92) among treatments. These results indicate that cattle removal date effected forage yield and total gain/hectare.


2016 ◽  
Vol 38 (3) ◽  
pp. 261 ◽  
Author(s):  
Amanda Nunes Assis dos Anjos ◽  
Clair Jorge Olivo ◽  
Caroline Paim Sauter ◽  
Aline Rodrigues Silva ◽  
Fabiene Tomazetti dos Santos ◽  
...  

Three grazing systems with Coastcross-1 bermuda grass (CC) + 100 kg N ha-1 year-1 + common vetch; CC + 100 kg N ha-1 year-1 + arrowleaf clover; and CC + 200 kg N ha-1 year-1 were evaluated. Thirteen grazing cycles were performed during the experimental period (313 days), with two, five, four and two cycles respectively in winter, spring, summer and fall. Lactating Holstein cows were used in the evaluation. Daily accumulation rate, forage production, rate of forage disappearance, agronomic intake, grazing efficiency, herbage allowance and stocking rate were evaluated. Mean rates of forage yield and stocking rate were 20.8; 17.6 and 19.7 t DM ha-1 and 7.0; 6.8 to 6.8 animal units ha-1 day-1 for the respective forage systems. The mixture Coastcross-1 plus common vetch, fertilized with 100 kg N ha-1 year-1 and Coastcross-1 fertilized with 200 kg N ha-1 year-1 provided greater productivity and better distribution of forage throughout the seasons. 


Sign in / Sign up

Export Citation Format

Share Document