scholarly journals Biogas Production and Greenhouse Gas (GHG) Emissions Reduction due to Use of Biogas Digesters in Small Farms in Quang Tri Province, Vietnam

Author(s):  
H.T. Hoang ◽  
T. Kato

This research aims to assess the greenhouse gas (GHG) emissions reductions due to the use of biogas technology in Quang Tri Province. With a total of over 354,000 cattle in Quang Tri Province, Vietnam, waste from livestock becomes large. The GHG emitted from the livestock industry is not small, affecting the environment. Currently, there is little concern or documentation about the reduction of GHG emissions in small farms using biogas digesters in central Vietnam. This province has applied technological solutions, typically biogas digesters, but the amount of biogas production is not calculated accurately. Our survey was conducted in Vinh Linh District and Cam Lo District in March 2019 and involved 50 farms equipped with biogas digesters and 20 farms without it. The respondents were selected based on the information provided by local authorities, satisfying two conditions: livestock households and biogas users. The former group was asked 25 questions and the latter was asked 10 questions needed to calculate GHG emissions such as the number of animals and petroleum gas/ firewood consumption. This study uses formulas described in the 2006 guideline issued by IPCC to estimate reduced GHG emissions. The results showed that the average biogas production is 5.52 m³.household-1.day-1. Only 2% of the farms made the best use of the biogas digester. The surveyed households have not really used the most optimal amount of biogas production. In this scenario, this study recommends some solutions for solving the problem. In addition, the average annual emissions before having a biogas digester are estimated to be 20.53 tons CO2e/household/year. After using the biogas, the GHG emissions are reduced to 4.52 tCO2e.household-1.day-1. Thus, the replacement of daily cooking energies with biogas helps reduce 16.01 tCO2e of greenhouse gas for each farm per year.

2020 ◽  
Vol 1 (2) ◽  
pp. p113
Author(s):  
Oscar Wambuguh

Fossil fuels are the primary sources of energy powering economic development globally. Increased fossil fuel consumption produces Greenhouse Gas Emissions (GHG) which build in the atmosphere and trap heat irradiated from the Earth. The increased concentration of these gases causes global warming and extensive climate disruptions. This study examined GHG emissions data from 2000-2017 to evaluate whether California will meet GHG emissions reduction target of 40% below 1990 levels by 2030 as mandated by California’s Executive Order B-30-15. California’s ability to reduce GHG emissions to 80% below 1990 levels by 2050 (Executive Order S-3-05) was also evaluated. Results indicate that transportation, electric power, industrial and commercial/residential) GHG emissions reductions declined by small magnitudes in the 18-year period (0.17% to 2.49%). In agriculture, refrigerant and recycling/waste agencies, emissions reductions increased in the 18-year period (0.08% to 0.8%). For 2030 and 2050 emissions reductions targets, no emissions category sector will achieve the targeted reduction. The highest emissions reduction amounts discrepancies between observed and expected were in transportation, industrial and commercial/residential sectors (2030); and in transportation, industrial and agricultural facilities (2050). An analysis of current trends and technological developments in each emissions sector is presented to guide and structure future emissions target reductions.


2017 ◽  
Vol 6 (2) ◽  
pp. 66 ◽  
Author(s):  
Maria Storrle ◽  
Hans-Jorg Brauckmann ◽  
Gabriele Broll

This study investigates the amounts of greenhouse gas (GHG) emissions due to manure handling within different livestock production systems in Tyumen oblast of Western Siberia. Tyumen oblast occupies approx. 160 000 km² of Asian taiga and forest steppe. The amount of GHGs from manure was calculated as a function of the handling according to current IPCC guidelines for ecozones and livestock production systems. The entire Tyumen oblast has annual 7 400 t methane emissions and 440 t nitrous oxide emissions from manure. Three livestock production systems are prevalent in Tyumen oblast: Mega farms, small farms and peasant farms. The share of mega farms is 81 % (171 kt CO2 eq). Additionally, the slurry system in mega farms causes environmental pollution. GHG emissions and environmental pollution could be reduced by implementing solid manure systems or pasturing, by installing storage facilities for slurry outside the stables and through application of the manure as fertiliser at mega farms. In small farms solid manure systems and a small stocking density of livestock lead to smallest GHG emissions (1 %, 3 kt CO2 eq) from manure. In peasant farming 18 % (38 kt CO2 eq) of GHGs are emitted due to pasturing. 


2016 ◽  
Vol 38 (3) ◽  
pp. 219 ◽  
Author(s):  
Sandra J. Eady ◽  
Guillaume Havard ◽  
Steven G. Bray ◽  
William Holmes ◽  
Javi Navarro

This paper explores the effect of using regional data for livestock attributes on estimation of greenhouse gas (GHG) emissions for the northern beef industry in Australia, compared with using state/territory-wide values, as currently used in Australia’s national GHG inventory report. Regional GHG emissions associated with beef production are reported for 21 defined agricultural statistical regions within state/territory jurisdictions. A management scenario for reduced emissions that could qualify as an Emissions Reduction Fund (ERF) project was used to illustrate the effect of regional level model parameters on estimated abatement levels. Using regional parameters, instead of state level parameters, for liveweight (LW), LW gain and proportion of cows lactating and an expanded number of livestock classes, gives a 5.2% reduction in estimated emissions (range +12% to –34% across regions). Estimated GHG emissions intensity (emissions per kilogram of LW sold) varied across the regions by up to 2.5-fold, ranging from 10.5 kg CO2-e kg–1 LW sold for Darling Downs, Queensland, through to 25.8 kg CO2-e kg–1 LW sold for the Pindan and North Kimberley, Western Australia. This range was driven by differences in production efficiency, reproduction rate, growth rate and survival. This suggests that some regions in northern Australia are likely to have substantial opportunities for GHG abatement and higher livestock income. However, this must be coupled with the availability of management activities that can be implemented to improve production efficiency; wet season phosphorus (P) supplementation being one such practice. An ERF case study comparison showed that P supplementation of a typical-sized herd produced an estimated reduction of 622 t CO2-e year–1, or 7%, compared with a non-P supplemented herd. However, the different model parameters used by the National Inventory Report and ERF project means that there was an anomaly between the herd emissions for project cattle excised from the national accounts (13 479 t CO2-e year–1) and the baseline herd emissions estimated for the ERF project (8 896 t CO2-e year–1) before P supplementation was implemented. Regionalising livestock model parameters in both ERF projects and the national accounts offers the attraction of being able to more easily and accurately reflect emissions savings from this type of emissions reduction project in Australia’s national GHG accounts.


2019 ◽  
Vol 8 (1) ◽  
pp. 167-192 ◽  
Author(s):  
Benoit Mayer

AbstractOn 9 October 2018, the Court of Appeal of The Hague (the Netherlands) upheld the District Court’s decision in the case of Urgenda, thus confirming the obligation of the Netherlands to reduce its greenhouse gas (GHG) emissions by at least 25% by 2020 compared with levels in 1990. This case raised some of the thorniest issues in climate law. As the Netherlands is responsible for only a tiny fraction of global GHG emissions, is it right for a court to hold that a national emissions reduction mitigation target is necessary to prevent dangerous climate change and its impact on human rights? If so, how can this target be determined? The District Court and the Court of Appeal of The Hague have provided inspiring responses, although they are perhaps not entirely convincing.


Author(s):  
Serena Alexander ◽  
Asha Weinstein Agrawal ◽  
Benjamin Clark

This paper focuses on how cities can use climate action plans (CAPs) to ensure that on-demand mobility and autonomous vehicles (AVs) help reduce, rather than increase, greenhouse gas (GHG) emissions and inequitable impacts from the transportation system. We employed a three-pronged research strategy involving: (1) an analysis of the current literature on on-demand mobility and AVs; (2) a systematic content analysis of 23 CAPs and general plans (GPs) developed by municipalities in California; and (3) a comparison of findings from the literature and content analysis of plans to identify opportunities for GHG emissions reduction and mobility equity. Findings indicate that policy and planning discussions should consider the synergies between AVs and on-demand mobility as two closely related emerging mobility trends, as well as the key factors (e.g., vehicle electrification, fuel efficiency, use and ownership, access, and distribution, etc.) that determine whether the deployment of AVs would help reduce GHG emissions from transportation. Additionally, AVs and on-demand mobility have the potential to contribute to a more equitable transportation system by improving independence and quality of life for individuals with disabilities and the elderly, enhancing access to transit, and helping alleviate the geographic gap in public transportation services. Although many municipal CAPs and GPs in California have adopted several strategies and programs relevant to AVs and on-demand mobility, several untapped opportunities exist to harness the GHG emissions reduction and social benefits potential of AVs and on-demand mobility.


Author(s):  
Robert Bailis ◽  
Neda Arabshahi

While binding regulations on greenhouse gas (GHG) emissions have yet to be introduced outside of a limited number of high-emitting sectors in the EU, several organizations have set up voluntary GHG programs that promote firm-level inventories and/or emission reductions. Many argue that these programs are not forceful or rigorous enough to result in real emissions reductions and may simply encourage “greenwashing.” In 2007, the United Nations Global Compact initiated the voluntary Caring for Climate (C4C) platform for businesses wishing to demonstrate climate leadership. To assess how voluntary emissions reduction programs have performed, this study examines the progress that C4C signatories have made. The results show widely dispersed GHG quantities and a range of reduction plans. Due to the lack of uniform, comparable data, the authors call for standardized, clearly defined carbon accounting guidelines as the first step towards effective corporate GHG management.


2019 ◽  
Vol 11 (8) ◽  
pp. 2249 ◽  
Author(s):  
Harilaos Psaraftis

“Speed optimization and speed reduction” are included in the set of candidate short-term measures under discussion at the International Maritime Organization (IMO), in the quest to reduce greenhouse gas (GHG) emissions from ships. However, there is much confusion on what either speed optimization or speed reduction may mean, and some stakeholders have proposed mandatory speed limits as a measure to achieve GHG emissions reduction. The purpose of this paper is to shed some light into this debate, and specifically examine whether reducing speed by imposing a speed limit is better than doing the same by imposing a bunker levy. To that effect, the two options are compared. The main result of the paper is that the speed limit option exhibits a number of deficiencies as an instrument to reduce GHG emissions, at least vis-à-vis the bunker levy option.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5755
Author(s):  
Adam Wąs ◽  
Piotr Sulewski ◽  
Vitaliy Krupin ◽  
Nazariy Popadynets ◽  
Agata Malak-Rawlikowska ◽  
...  

Renewable energy production is gaining importance in the context of global climate changes. However, in some countries other aspects increasing the role of renewable energy production are also present. Such a country is Ukraine, which is not self-sufficient in energy supply and whose dependency on poorly diversified import of energy carriers regularly leads to political tensions and has socio-economic implications. Production of agricultural biogas seems to be a way to both slow down climatic changes and increase energy self-sufficiency by replacing or complementing conventional sources of energy. One of the most substantial barriers to agricultural biogas production is the low level of agricultural concentration and significant economies of scale in constructing biogas plants. The aim of the paper was thus to assess the potential of agricultural biogas production in Ukraine, including its impact on energy self-sufficiency, mitigation of greenhouse gas (GHG) emissions and the economic performance of biogas plants. The results show that due to the prevailing fragmentation of farms, most manure cannot be processed in an economically viable way. However, in some regions utilization of technically available manure for agricultural biogas production could cover up to 11% of natural gas or up to 19% of electricity demand. While the theoretical potential for reducing greenhouse gas emissions could reach 5% to 6.14%, the achievable technical potential varies between 2.3% and 2.8% of total emissions. The economic performance of agricultural biogas plants correlates closely with their size and bioenergy generation potential.


2013 ◽  
Vol 45 (1) ◽  
pp. 171-185 ◽  
Author(s):  
Nate Lyman ◽  
L. Lanier Nalley

U.S. rice industry producers face pressure from consumers, suppliers, and the government to reduce the greenhouse gas (GHG) emissions associated with rice (Oryza sativa L.) production. Arkansas rice cultivar-specific net GHG emissions information allows models of paddy rice emissions. Baseline levels of profit, yield variance, and GHG emissions are established using extension data. Varietal selection is then optimized to maximize profits and minimize GHG emissions, both constrained and unconstrained by baseline yield variance. Carbon abatement functions are estimated to examine the effects of hypothetical carbon prices on varietal selection.


Sign in / Sign up

Export Citation Format

Share Document