scholarly journals Isotopic and Hydrochemical Study of Groundwater in an Area Between the Lesser Zab and Tigris River, Northern Iraq

2021 ◽  
Vol 54 (1F) ◽  
pp. 44-50
Author(s):  
Qusai Y. Al-Kubaisi

Stable isotopes (2H, 18O) in the water cycle can carry all the information about the movement of water molecules, their ratio different from one place to another in rainfall. Stable isotopes are the function of evaporation, relative humidity, temperature and different longitude, latitude and altitude. On this base. A total of 28 water sample (20 samples were analyzed for major ions and 8 samples for stable isotopes) were collected for two periods to study the origin and the type of groundwater in the area between Lesser Zab and the Tigris river The Results indicated that groundwater samples in the study area are brackish saline water and excessively mineralized water. The average groundwater was classified as Mg-Na-Calcium: Cl-Sulfate for two periods. The groundwater samples represent earth alkali with privilege sulfate and chloride according to the piper diagram. The mean values of 18H and 2O in the groundwater sample are -27.7 and -4.9, respectively for the dry period, and -29.8 and -5.2, respectively, for the wet period. The d-excess varies significantly depending on the humidity and temperature at the vapor source. Isotopic analysis of 2H -18O for groundwater in the study area shows that the origin of groundwater in the study area is of meteoric origin from global source and rain from a local source. The downward shifting of the regression line on the 2H-18O diagram indicates that the samples have undergone evaporation events.

Author(s):  
R. El Moukhayar ◽  
M. Bahir ◽  
N. Youbi ◽  
N. Chkir ◽  
H. Chamchati ◽  
...  

Abstract. The characteristics of the Essaouira basin water resources are a semi-arid climate, which is severely impacted by the climate (quantity and quality). Considering the importance of the Essaouira aquifer in the groundwater supply of the region, a study was conducted in order to understand groundwater evolution in this aquifer. The Essaouira aquifer is a coastal aquifer located on the Atlantic coastline of southern Morocco, corresponding to a sedimentary basin with an area of nearly 200 km2. The control of the fluid exchange and the influence of mixing zones between the groundwater and saline water was investigated by sampling from 20 wells, drillings and sources belonging to the Plio-Quaternary and Turonian aquifers. It is hypothesized that groundwater major ions chemistry can be employed to determine the interaction between the groundwater and saline water (coastal aquifers). Groundwater samples examined for electric conductivity and temperature showed that waters belonging to the Plio-Quaternary and Turonian aquifers present very variable electric conductivities, from 900 μs/cm to 3880 μs/cm. Despite this variability, they are from the same family and are characterized by sodium-chloride facies. However, a good correlation exists between the electrical conductivity and chloride and sodium contents. The lower electrical conductivities are situated in the North quarter immediately to the south of the Wadi Ouazzi.


2020 ◽  
Vol 26 (2) ◽  
pp. 99-106
Author(s):  
O.A. Akanbi ◽  
W. Sanni ◽  
O. Oshin ◽  
A.G. Olatunde

The people of Igboora rely on groundwater for their domestic water supply. A hydrogeochemical study was carried out on twenty-seven  groundwater samples collected from various boreholes across the study area to determine the suitability of the groundwater for drinking purpose. The total dissolve solids (TDS), electrical conductivity (EC) and pH of the water were measured in the field directly, while the concentrations of major ions were done in the laboratory using flame photometry and spectrophotometry methods. The hydrogeochemical facies classes was done with piper plot and the likely enrichment source(s) of the chemical facies were interpreted with Gibbs plot in conjunction with correlation analysis. The results showed that the pH was between 5.0 and 6.7 at an average (av.) of 5.8; TDS ranged from 50 – 280 (av. 183) mg/L and EC was 110 – 560 (av. 373) μS/cm. The concentrations of the major cations in mg/L were: 5 – 105.5 Ca2+, 1 – 11.9 Mg2+, 0 - 95 Na+, 0 – 112 K+, while for anions the ranges were, 9 - 58 HCO3 - , 6.8 – 28.8 CO3 2-, 1.1 – 29.4 SO4 2-, 2.9 – 26 Cl- and 16 – 90.5 for NO3 -. From the mean values, the order of the cationic dominance was Ca2+ > K+ > Na+ > Mg2+ while that of anionic was NO3 -> HCO3 - > CO3 2- > CI- > SO4 2- . The hydrogeochemical facies in the groundwater was  mainly Ca-HCO3 type with minor occurrences of Na-HCO3 and Ca- Na-HCO3 types. Enrichment source of the cationic chemical facies was mainly rock dominated, while that of the anionic were from meteoric and biogenic sources. From the results of correlation analyses, the TDS has direct and positive relationships with most chemical constituents, indicating that the analysed ionic constituents dominated the dissolved solids in the groundwater. The groundwater can be said to be potable except that the water in the boreholes is slightly acidic and nitrate concentration exceeded recommended limit of 50 mg/L in many of the samples.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Filomena Canora ◽  
Giovanna Rizzo ◽  
Simona Panariello ◽  
Francesco Sdao

In this study, the hydrogeological characterization of the northern sector of the Lauria Mounts carbonate hydrostructure (southern Apennines, Basilicata region) has been carried out and the hydrochemical properties of different collected groundwater samples have been characterized. Several normal springs drain the hydrostructure, some of them characterized by high annual mean discharges. Groundwater samples were collected from different springs; many parameters such as pH, electrical conductivity, and total dissolved solids have been measured, and major (cations and anions) elements and stable isotopes have been analysed following standard test procedures. Other chemical characteristics were derived from the analysed quality parameters. The results elucidate that the main hydrogeochemical processes control the chemical content and assess the quality of the groundwater within the hydrostructure. The analyses highlight that the chemical compositions of groundwater are strongly influenced by the lithology, especially limestones and dolomitic limestones; they explain and confirm the hydrogeological setting of the system. The groundwater system displays light different geochemical signatures. The processes contributing to the concentrations of major ions depend primarily on carbonate dissolution. The analysis, in all studied groundwater samples, shows that the facies groundwater type is Ca–HCO3, bicarbonate is the dominant anion, and calcium is the dominant cation with appreciable magnesium concentrations. To identify the aquifer’s recharge areas, the environmental stable isotopes oxygen and hydrogen, deuterium, and 18O were analysed. The unaltered δ18O and δD signatures for the groundwater of the major springs allows identifying the recharge area of these emergencies at elevations ranging from 900 m to 1000 m (a.s.l.), pointing out the presence of deeper flow regime feeding of these springs. The groundwater sample isotopic characteristics of D and 18O suggest that most of the groundwater is recharged directly by infiltration in a high-permeability medium.


2017 ◽  
Vol 12 (2) ◽  
pp. 354-362
Author(s):  
Song Chen ◽  
Herong Gui

In this study, we collected 22 groundwater samples and supporting measurements from different coal-mining districts in the Huaibei coalfield to examine the age, hydro-chemical characteristics, and evolution of groundwater in the Ordovician limestone aquifer (OA). We determined the groundwater concentrations of major ions, stable isotopes (hydrogen and oxygen) and a radio isotope (14C). All the samples were alkaline in nature, and had pH values between 7.10 and 10.80. The total dissolved solids (TDS) contents varied from 119 to 2,443 mg/l. The concentrations of δD and δ18O in groundwater varied from −64.32‰ to −42.76‰, and from −8.62‰ to −5.40‰, with mean values of −56.38‰ and −7.62‰, respectively. The groundwater at OA is recharged by rainfall or surface water, and, because of either the long residence time or runoff into the aquifer, is influenced by water-rock interactions. The age of the groundwater in the OA ranged from 2,660a to 10,040a, and the groundwaters were youngest and oldest in the Renlou and Yangzhuang coal mines, respectively. Contour diagrams of TDS in groundwater, the groundwater age, and the spatial distribution of the water types indicated that the Renlou and Yangzhuang mines were the recharge and discharge areas, respectively.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1855
Author(s):  
Mohammed Benaafi ◽  
Abdulaziz Al-Shaibani

The Wajid aquifer is considered the main source of water for drinking and irrigation in Wadi Al-Dawasir and Najran, the southern region of Saudi Arabia. This aquifer has been used since the 1960s, and due to the expansion in agricultural activities, the aquifer has been overexploited. The study aims to understand the origin, hydrochemical processes of the groundwater in the shallow unconfined, deep unconfined, and confined parts of the Wajid aquifer in the Wadi Al-Dawasir area. In-situ hydrochemical parameters (pH, temperature, EC, and TDS) were measured in the field, and groundwater samples were collected for major ions and stable isotopes (2H and 18O) measurements in the laboratory. The results show that the groundwater in shallow unconfined, and confined aquifers are of two types; Cl.SO4-Ca. Na and Cl.SO4-Na. Ca; however, groundwater in deep, unconfined aquifers is characterized as HCO3-Ca. Na, and Cl. HCO3-Ca. Na; types of groundwater. The isotopic analysis results reveal that all groundwater samples have values of δ18Oand δ2Hclose to the local and global meteoric water lines, indicating the meteoric origin of Wajid groundwater. Three major hydrochemical processes, including rock weathering, ion exchange, and evaporation, have been identified as key controls on the chemical composition of water in the studied aquifer. The evaporation and ion exchange processes have more influence on the chemical composition of groundwater in the shallow unconfined and confined aquifers. On the contrary, weathering of carbonate minerals affected more the chemistry of groundwater in a deep unconfined aquifer. The unconfined section of the Wajid aquifer shows a reverse pattern of salinity with higher salinity in the recharge area, which is most probably related to the return irrigation water and leaching of salty soil. The open fractures in the upper part of Wajid sandstone most likely act as conduits to percolated saline water to the Wajid aquifer.


2015 ◽  
Vol 19 (1) ◽  
pp. 551-565 ◽  
Author(s):  
F. Liu ◽  
X. Song ◽  
L. Yang ◽  
Y. Zhang ◽  
D. Han ◽  
...  

Abstract. A series of changes in groundwater systems caused by groundwater exploitation in energy base have been of great concern to hydrogeologists. The research aims to identify the origin and geochemical evolution of groundwater in the Subei Lake basin under the influence of human activities. Water samples were collected, and major ions and stable isotopes (δ18O, δD) were analyzed. In terms of hydrogeological conditions and the analytical results of hydrochemical data, groundwater can be classified into three types: the Quaternary groundwater, the shallow Cretaceous groundwater and the deep Cretaceous groundwater. Piper diagram and correlation analysis were used to reveal the hydrochemical characteristics of water resources. The dominant water type of the lake water was Cl-Na type, which was in accordance with hydrochemical characteristics of inland salt lakes; the predominant hydrochemical types for groundwater were HCO3–Ca, HCO3–Na and mixed HCO3–Ca–Na–Mg types. The groundwater chemistry is mainly controlled by dissolution/precipitation of anhydrite, gypsum, halite and calcite. The dedolomitization and cation exchange are also important factors. Rock weathering is confirmed to play a leading role in the mechanisms responsible for the chemical composition of groundwater. The stable isotopic values of oxygen and hydrogen in groundwater are close to the local meteoric water line, indicating that groundwater is of modern local meteoric origin. Unlike significant differences in isotopic values between shallow groundwater and deep groundwater in the Habor Lake basin, shallow Cretaceous groundwater and deep Cretaceous groundwater have similar isotopic characteristics in the Subei Lake basin. Due to the evaporation effect and dry climatic conditions, heavy isotopes are more enriched in lake water than in groundwater. The low slope of the regression line of δ18O and δD in lake water could be ascribed to a combination of mixing and evaporation under conditions of low humidity. Comparison of the regression line for δ18O and δD showed that lake water in the Subei Lake basin contains more heavily isotopic composition than that in the Habor Lake basin, indicating that lake water in the discharge area has undergone stronger evaporation than lake water in the recharge area. Hydrochemical and isotopic information of utmost importance has been provided to decision makers by the present study so that a sustainable groundwater management strategy can be designed for the Ordos energy base.


Author(s):  
Roberto González-De Zayas ◽  
Liosban Lantigua Ponce de León ◽  
Liezel Guerra Rodríguez ◽  
Felipe Matos Pupo ◽  
Leslie Hernández-Fernández

The Cenote Jennifer is an important and unique aquatic sinkhole in Cayo Coco (Jardines del Rey Tourist Destination) that has brackish to saline water. Two samplings were made in 1998 and 2009, and 4 metabolism community experiments in 2009. Some limnological parameters were measured in both samplings (temperature, salinity, pH, dissolved oxygen major ions, hydrogen sulfide, nutrients and others). Community metabolism was measured through incubated oxygen concentration in clear and dark oxygen bottles. Results showed that the sinkhole limnology depends on rainfall and light incidence year, with some stratification episodes, due to halocline or oxycline presence, rather than thermocline. The sinkhole water was oligotrophic (total nitrogen of 41.5 ± 22.2 μmol l−1 and total phosphorus of 0.3 ± 0.2 μmol l−1) and with low productivity (gross primary productivity of 63.0 mg C m−2 d−1). Anoxia and hypoxia were present at the bottom with higher levels of hydrogen sulfide, lower pH and restricted influence of the adjacent sea (2 km away). To protect the Cenote Jennifer, tourist exploitation should be avoided and more resources to ecological and morphological studies should be allocated, and eventually use this aquatic system only for specialized diving. For conservation purposes, illegal garbage disposal in the surrounding forest should end.


1977 ◽  
Vol 12 (1) ◽  
pp. 51-76
Author(s):  
B. Bobée ◽  
D. Cluis ◽  
A. Tessier

Abstract A water quality sampling programme for James Bay territory established in a previous study has been carried out for the Department of Natural Resources of the Province of Quebec. The network is composed of 5 base-stations, sampled every fortnight to determine the variability with time of the parameters and 16 satellite-stations, sampled five times yearly with a view to determine the spatial variability. The data (major ions and certain nutrients) gathered during the 1974–1975 field survey are subjected to an analysis by a multivariate technique (correspondence analysis) in addition to certain classical statistical methods. The latter have shown that the mean values obtained at satellite stations were representative of the annual mean. In addition, the results permit the determination for a given parameter, of the relationship between stations and, for a given station, the relationship between parameters. In both cases, the formulation of predictive equations was attempted. An overall evaluation of the data by correspondence analysis has permitted: - a more precise definition of the qualitative behaviour of the different sub-basins of the James Bay territory and characterization of their waters;- a proof of the existence of gradual concentration changes in both East-West and North-South directions. Within the original objectives of the network, the results of the study have led to the following recommendations: - to continue synchronised samplings;- to transform a base station with a low information content into a satellite station;- to create a new base station in the eastern part of the territory.


2021 ◽  
Vol 13 (11) ◽  
pp. 2041
Author(s):  
Lisa Milani ◽  
Norman B. Wood

Falling snow is a key component of the Earth’s water cycle, and space-based observations provide the best current capability to evaluate it globally. The Cloud Profiling Radar (CPR) on board CloudSat is sensitive to snowfall, and other satellite missions and climatological models have used snowfall properties measured by it for evaluating and comparing against their snowfall products. Since a battery anomaly in 2011, the CPR has operated in a Daylight-Only Operations (DO-Op) mode, in which it makes measurements primarily during only the daylit portion of its orbit. This work provides estimates of biases inherent in global snowfall amounts derived from CPR measurements due to this shift to DO-Op mode. We use CloudSat’s snowfall measurements during its Full Operations (Full-Op) period prior to the battery anomaly to evaluate the impact of the DO-Op mode sampling. For multi-year global mean values, the snowfall fraction during DO-Op changes by −10.16% and the mean snowfall rate changes by −8.21% compared with Full-Op. These changes are driven by the changes in sampling in DO-Op and are very little influenced by changes in meteorology between the Full-Op and DO-Op periods. The results highlight the need to sample consistently with the CloudSat observations or to adjust snowfall estimates derived from CloudSat when using DO-Op data to evaluate other precipitation products.


Sign in / Sign up

Export Citation Format

Share Document