scholarly journals The Impact of COVID-19 Pandemic on Firms Performance: Analysis of the Companies from the MBI10 Index

2021 ◽  
Vol 6 ◽  
pp. 174-184
Author(s):  
Elena Veselinova
Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 632
Author(s):  
Xiaozheng Wang ◽  
Minglun Zhang ◽  
Hongyu Zhou ◽  
Xiaomin Ren

The performance of the underwater optical wireless communication (UOWC) system is highly affected by seawater´s inherent optical properties and the solar radiation from sunlight, especially for a shallow environment. The multipath effect and degradations in signal-to-noise ratio (SNR) due to absorption, scattering, and ambient noises can significantly limit the viable communication range, which poses key challenges to its large-scale commercial applications. To this end, this paper proposes a unified model for underwater channel characterization and system performance analysis in the presence of solar noises utilizing a photon tracing algorithm. Besides, we developed a generic simulation platform with configurable parameters and self-defined scenarios via MATLAB. Based on this platform, a comprehensive investigation of underwater channel impairments was conducted including temporal and spatial dispersion, illumination distribution pattern, and statistical attenuation with various oceanic types. The impact of ambient noise at different operation depths on the bit error rate (BER) performance of the shallow UOWC system was evaluated under typical specifications. Simulation results revealed that the multipath dispersion is tied closely to the multiple scattering phenomenon. The delay spread and ambient noise effect can be mitigated by considering a narrow field of view (FOV) and it also enables the system to exhibit optimal performance on combining with a wide aperture.


Author(s):  
Dries Verstraete ◽  
Kjersti Lunnan

Small unmanned aircraft are currently limited to flight ceilings below 20,000 ft due to the lack of an appropriate propulsion system. One of the most critical technological hurdles for an increased flight ceiling of small platforms is the impact of reduced Reynolds number conditions at altitude on the performance of small radial turbomachinery. The current article investigates the influence of Reynolds number on the efficiency and pressure ratio of two small centrifugal compressor impellers using a one-dimensional meanline performance analysis code. The results show that the efficiency and pressure ratio of the 60 mm baseline compressor at the design rotational speed drops with 6–9% from sea-level to 70,000 ft. The impact on the smaller 20 mm compressor is slightly more pronounced and amounts to 6–10%. Off-design changes at low rotational speeds are significantly higher and can amount to up to 15%. Whereas existing correlations show a good match for the efficiency drop at the design rotational speed, they fail to predict efficiency changes with rotational speed. A modified version is therefore proposed.


2013 ◽  
Vol 671-674 ◽  
pp. 596-601
Author(s):  
Ming Ming Chen ◽  
Zhong Tao ◽  
Hen Min Zhang ◽  
Wen Zheng Yu

This paper introduces the impact experiment and an engineering application of the new composited wall which composed of calcium silicate composited board. Clearly defines the impact resistance of the wall in different connection as interior walls and exterior walls through observing the wall’s changes in the number of 5 times or even up to 50 times impact (10 times of the national standard). It can be known from the experiment that long wall has large vibration but good integrity. The window wall may fracture easily and is not able to meet the minimum standard requirements of impact resistance when the width is small. It needs to take reinforce measures.


2015 ◽  
Vol 46 (2) ◽  
pp. 62
Author(s):  
Remo Alessio Malagnino

Electric production from renewable resources, such as solar photovoltaic (PV), is playing an increasingly essential role in the agricultural industry because of the progressive increase in the energy price from fossil fuels and the simultaneous decrease in the income deriving from farming activities. A central issue in the sustainable diffusion of PV technologies is represented by the actual energy efficiency of a PV system. For these reasons, a performance analysis has been carried out in order to assess the potentials offered by different PV plants within a defined geographical context with the aim of investigating the impact of each component has on the PV generator global efficiency and defining the main technical parameters that allow to maximise the annual specific electric energy yield of an architectonically integrated plant, installed in a dairy house, compared to a ground-mounted plant. The annual performances of three grid connected PV plants installed in the same dairy cattle farm have been analysed: two are architectonically integrated plants - <em>i.e.</em>, a rooftop unidirectional and a multi-field systems (both 99 kW<sub>p</sub>) - and the other is a ground-mounted plant (480 kW<sub>p</sub>). Furthermore, the electrical performances, estimated by the photovoltaic geographical information system (PVGIS), developed by the EU Joint Research Centre, and by an analytical estimation procedure (AEP), developed on the basis of a meteo-climatic database related to the records of the nearest weather station and integrated by the components’ technical specifications, have been compared with the actual yields. The best annual performance has been given by the ground-mounted PV system, with an actual increase of 26% and in the range of 6÷12% according to different estimations, compared to the integrated systems, which were globally less efficient (average total loss of 26÷27% compared to 24% of the ground-mounted system). The AEP and PVGIS software estimates showed a good level of reliability for mean deviations between the annual actual and estimated electrical power yields have been equal to 11.5% for each PV system given the actual irradiation’ s uncertainty during the examined year. The main technical parameters, crucial to maximise the energy yield from a ground-mounted PV system to an integrated one, have been identified in the Tilt and Azimuth angles. Indeed, once a variance of 3÷4% in the global efficiency has been confirmed when the type of PV system is changed, in the case of the unidirectional integrated PV plant, the high roof pitch and the almost South orientation guarantee a solar energy increase up to 18% higher than that obtainable on the horizontal plane and similar to the increase estimated for the ground-mounted generator (+20%). Hence, integrated PV systems, besides reaching the same levels of energy efficiency as those ground-mounted, are also more <em>sustainable</em> than the latter. This is true providing that there are both a suitable orientation and an accurate design, especially to prevent the PV panels’ warming during summer, on an already available surface that is, however, functional to the roof’s architecture.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 621 ◽  
Author(s):  
Massimiliano Manfren ◽  
Benedetto Nastasi

High efficiency paradigms and rigorous normative standards for new and existing buildings are fundamental components of sustainability and energy transitions strategies today. However, optimistic assumptions and simplifications are often considered in the design phase and, even when detailed simulation tools are used, the validation of simulation results remains an issue. Further, empirical evidences indicate that the gap between predicted and measured performance can be quite large owing to different types of errors made in the building life cycle phases. Consequently, the discrepancy between a priori performance assessment and a posteriori measured performance can hinder the development and diffusion of energy efficiency practices, especially considering the investment risk. The approach proposed in the research is rooted on the integration of parametric simulation techniques, adopted in the design phase, and inverse modelling techniques applied in Measurement and Verification (M&V) practice, i.e., model calibration, in the operation phase. The research focuses on the analysis of these technical aspects for a Passive House case study, showing an efficient and transparent way to link design and operation performance analysis, reducing effort in modelling and monitoring. The approach can be used to detect and highlight the impact of critical assumptions in the design phase as well as to guarantee the robustness of energy performance management in the operational phase, providing parametric performance boundaries to ease monitoring process and identification of insights in a simple, robust and scalable way.


Author(s):  
A. Javed ◽  
R. Pecnik ◽  
M. Olivero ◽  
J. P. van Buijtenen

This paper presents a study on a small centrifugal impeller for microturbine application from a manufacturing perspective. The aim is to analyze the impact of geometric deviations on part performance using adequate performance modeling tools and statistical methods. A one-dimensional (1D) performance analysis tool has been developed in-house derived from the meanline and two-zone modeling methods. The 1D model has proved to be a simple and computationally inexpensive tool for having a quick performance analysis of the impeller using basic geometric information extracted from part drawings. For the sensitivity analysis, a total of eight input geometric parameters including radii, tip-clearance and blade angles have been varied individually within specific limits in the 1D tool for classifying their influence on the output performance. Since the 1D model is a simplified version of a much complex three-dimensional (3D) model, a commercial computational fluid dynamics (CFD) tool has been used to provide a comparison with the 1D model and scrutinize the effects of such deviations on the fluid behavior inside the impeller passage at a detailed level. For uncertainty quantification, Monte Carlo simulation has been performed using the 1D model to assess the variability of overall impeller output performance to simultaneous random deviations in the input geometric parameters. The study is useful to evaluate the possibility of designing gas turbine parts for manufacturability and superior production cost-effectiveness.


2017 ◽  
Vol 39 (1) ◽  
pp. 1-6
Author(s):  
Mehtab Singh

AbstractThis paper investigates the impact of various parameters on the performance of inter-aircraft optical wireless communication (IaOWC) link. Also, an improved performance analysis of a 2.5 Gbps IaOWC link using an array of photodetectors at the receiver terminal has been reported. The results show an increase in the SNR and total power of the received signal at a link distance of 100 km by deploying a photodetector array at the receiver terminal.


Sign in / Sign up

Export Citation Format

Share Document