scholarly journals Solar Electricity System Design for Administrative Buildings

2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Daniel O Johnson ◽  
Kabiru A Hassan ◽  
Sunday O Okusanya ◽  
James O Oladapo

Regular availability of electricity is fundamentally important for everyday running and productivity of any organisation. In any modern society, stable and reliable electric power is a basic need, without which living condition becomes substandard and smooth business operations become difficult. Unreliability of power services in Nigeria is taking its toll on administrative, academic and research activities at Federal Polytechnic, Ede, just like other institutions in the country. Diesel generator on which the institution depends for alternative power source during outage is not sustainable as outage is too frequent and the duration is usually long, at times for days. This results in a very high running cost if normal activities in the institution are to go unimpeded. This work is on the design of 172.84kWP Solar Photovoltaic (PV) System aimed at permanently addressing the electric power challenges at the Administrative Blocks of the Federal Polytechnic, Ede. The proposed project’ design was simulated and the results show that its real life performance is highly promising. The least energy yield of the PV system occurs in June with 549.93kWh/day as against the maximum demand of 457.30kWh/day. The system performance is much higher in the months of September to March as solar irradiance is higher in these months. The PV plant has active service life of over 25years without significant change in its efficiency. The benefits of the proposed project are manifold. The project if implemented will solve the electric power problem of the institution at the Administrative’ Building by providing stable, adequate and reliable 24-hour a day electricity. The estimated cost of the proposed project is N45, 000,000  which is much cheaper than diesel generator and interestingly, is appreciably less than the cost of unreliable power supply from the grid. Keywords: Energy yield, off-grid, photovoltaic system, solar electricity, solar photovoltaic

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2701 ◽  
Author(s):  
Saeed Abdul-Ganiyu ◽  
David A Quansah ◽  
Emmanuel W Ramde ◽  
Razak Seidu ◽  
Muyiwa S. Adaramola

The main objective of this paper is to experimentally assess the real-life outdoor performance of a photovoltaic-thermal (PVT) module against a conventional photovoltaic (PV) system in a hot humid tropical climate in Ghana. An experimental setup comprising a water-based mono-crystalline silicon PVT and an ordinary mono-crystalline silicon PV was installed on a rooftop at the Kwame Nkrumah University of Science and Technology in Kumasi and results evaluated for the entire year of 2019. It was observed that the annual total output energy of PV module was 194.79 kWh/m2 whereas that of the PVT for electrical and thermal outputs were 149.92 kWh/m2 and 1087.79 kWh/m2, respectively. The yearly average daily electrical energy yield for the PV and PVT were 3.21 kWh/kWp/day and 2.72 kWh/kWp/day, respectively. The annual performance ratios for the PV and PVT (based on electrical energy output only) were 79.2% and 51.6%, respectively, whilst their capacity factors were, respectively, 13.4% and 11.3%. Whereas the highest monthly mean efficiency recorded for the PV was 12.7%, the highest combined measured monthly mean electrical/thermal efficiency of the PVT was 56.1%. It is also concluded that the PVT is a worthy prospective alternative energy source in off-grid situations.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Varaprasad Janamala

AbstractA new meta-heuristic Pathfinder Algorithm (PFA) is adopted in this paper for optimal allocation and simultaneous integration of a solar photovoltaic system among multi-laterals, called interline-photovoltaic (I-PV) system. At first, the performance of PFA is evaluated by solving the optimal allocation of distribution generation problem in IEEE 33- and 69-bus systems for loss minimization. The obtained results show that the performance of proposed PFA is superior to PSO, TLBO, CSA, and GOA and other approaches cited in literature. The comparison of different performance measures of 50 independent trail runs predominantly shows the effectiveness of PFA and its efficiency for global optima. Subsequently, PFA is implemented for determining the optimal I-PV configuration considering the resilience without compromising the various operational and radiality constraints. Different case studies are simulated and the impact of the I-PV system is analyzed in terms of voltage profile and voltage stability. The proposed optimal I-PV configuration resulted in loss reduction of 77.87% and 98.33% in IEEE 33- and 69-bus systems, respectively. Further, the reduced average voltage deviation index and increased voltage stability index result in an improved voltage profile and enhanced voltage stability margin in radial distribution systems and its suitability for practical applications.


2019 ◽  
Vol 7 (2) ◽  
pp. 37
Author(s):  
Jama S. Adam ◽  
Adebayo A. Fashina

This work presents the design of a 100kVA hybrid solar power system for Gollis University’s administrative block, Hargeisa, Somaliland. Prior to the system design, a preliminary field work on the site was performed to essentially measure the power/energy consumption of Gollis university’s administrative block. The results from the site survey was then used to select the appropriate equipment and instrument required for the design. This was achieved by calculating the energy consumption and then sizing the solar panel, battery, inverter and charge controller. The battery back-up time analysis at full load was also carried out to determine the effectiveness of the inverter size chosen. The inverter system was modeled and simulated using the MATLAB/Simulink software package. The simulation was used to study the reliability of the size of inverter chosen for the design, since the failure of most photovoltaic systems is ascribed to inverter failures. The results from the MATLAB/Simulink simulation showed that the inverter selected for the hybrid PV system has the ability to maximize the power produced from the PV array, and to generate sinusoidal AC voltage with minimum output distortion. The results also revealed that the PV solar system can provide a back-up time of 47.47 hours. The implications of the results are then discussed before presenting the recommendations for future works.  


2020 ◽  
Vol 9 (1) ◽  
pp. 1056-1062

Solar Technology is fast becoming a preferred trend in the field of electric power. This is because of the fact that solar energy, freely available is transferred into electric power without causing any environment hazard. Commercial power system is grid organized system. Therefore, the solar system also needs cooperative to established grid system. Grid connected solar photovoltaic system is a friendly and affordable system for large solar power generation. These systems exhibit good power efficiency beside of their other advantages. Here we pursue our studies on 150 KW grid connected SPV system. In this paper we design and model a 150 KW SPV system and compared its performance with the real time data collected by us through our experimental setup. The experimental setup is based on the module provided by RenewSys DESERV 3M6 with 72 cells on SPV module. This module is a polycrystalline silicon module and was manufactured in the year 2018 and purchased in the same year. In this study important effects that the performance degradation is also considered and the overall results obtained are found satisfactory


2018 ◽  
Vol 225 ◽  
pp. 04004
Author(s):  
Tan Dei Han ◽  
Mohamad Rosman M. Razif ◽  
Shaharin A. Sulaiman

Solar photovoltaic (PV) systems has the potential of supplying infinite electricity from renewable energy to rural areas around Malaysia. Various preterm failures happening frequently on the system lead to its drop in efficiency and breakdown. Lack of studies on the system in Malaysia hinders the development in terms of operation and maintenance. There is no proper documentation relevant to the premature failure of the system in Malaysia. The main objective of this project is to study the nature of premature failure of stand-alone solar photovoltaic system in Malaysia in order to improve the operation and maintenance of the system. The present study would provide reference for proper planning on operation and maintenance of the PV system. The study was conducted base on expert’s input and extensive literature survey. FMEA method and ISM approach are applied to analyze the data collected. Poor cooling system have the highest risk priority number. Poor workmanship is the least depending factor for premature failure to happen thus requires most attention. Highest driving force of premature failure is poor monitoring and maintenance. More focus should be given to these premature failure during the planning for operation and maintenance due to its severity and impact.


Electronics ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 905 ◽  
Author(s):  
Akpolat ◽  
Dursun ◽  
Kuzucuoğlu ◽  
Yang ◽  
Blaabjerg ◽  
...  

Turkey is among the countries largely dependent on energy import. This dependency has increased interest in new and alternative energy sources. Installation of rooftop solar photovoltaic systems (RSPSs) in Turkey is increasing continuously regarding geographical and meteorological conditions. This paper presents an insight into the potential situation for Turkey and a simulation study for the RSPS designing and calculation for the faculty building at Marmara University in Istanbul. This simulation study demonstrates that 84.75-kWp grid-connected RSPS can produce remarkable power. The system is performed in detail with the PV*SOL software (Premium 2017 R8 - Test Version, Valentin Software GmbH, Berlin, Germany). Detailed financial and performance analysis of the grid-connected RSPS for faculty building with various parameters is also carried out in this study. According to the simulation results, the system supplies 13.2% of the faculty buildings’ annual electrical energy consumption. The annual savings value of faculty buildings’ electrical consumption is approximately 90,298 kWh energy which costs roughly $7296. A photovoltaic (PV) system installation for the faculty building, which has considerable potential for solar energy and sunshine duration, is indispensable for clean energy requirements and was supported by the simulation results. This paper can be considered to be a basic feasibility study prior to moving on to the implementation project.


2015 ◽  
Vol 137 (3) ◽  
Author(s):  
S. Malathy ◽  
R. Ramaprabha

The energy yield of the photovoltaic (PV) system is reduced to a greater extent under shaded conditions. Reconfiguration and repositioning techniques demand more number of sensors, switches, and an efficient control algorithm and are well suited for rapidly changing shade conditions. However, for fixed shading that is common in urban rooftop installations, where the shading is partial and usually caused by nearby structures, a simple, yet effective technique is necessary. This paper addresses the issue by grouping the panels based on shade intensity and the merits of asymmetrical multilevel inverter (AMLI) are utilized as the working voltage of each group is different.


2012 ◽  
Vol 517 ◽  
pp. 791-796
Author(s):  
Cheng Yao Wang ◽  
Yin Xu ◽  
Yao Ming Zhang ◽  
Yong Ming Hua

In this paper, a concentrating photovoltaic (CPV) system with low ratio was successfully developed. In the design of CPV concentrator, a quasi-parabolic reflector was adopted. With the research of basic optical mechanisms, a mathematic model was built with the corresponding program. In addition, the width of light spot was analyzed with considering the symmetry of tracking errors and glass deformation in manufacture to identify reasonable values. The system was designed with a reflector of 10 flat mirrors, which has a geometrical concentration ratio of 8.18 and a flux concentration ratio of 5. The concentrating photovoltaic system was investigated experimentally under the various weather conditions. The output voltage profile and the output power of the flat PV system and the CPV system were presented to analyze the concentration ratio and the electric power. And the influence of soiling was also discussed. The results showed that the performance of tracking system was good in a clear day. Compared to the flat cell with the same system, the electric power was nearly increased by 4-5 times.


2019 ◽  
Vol 22 (3) ◽  
pp. 194-201
Author(s):  
Saja Majeed Hashim ◽  
Osamah Fadhil Abdulateef ◽  
Falah Ibrahim Alattar

This paper displays the improvement of Graphical User Interface programming for sizing principle segment in Stand-Alone PV system and PV- Diesel hybrid power system based on Iraq conditions. The solar system software is a tool depends on the input data by the user to give correct results on the basis of what has been introduced. Therefore, this software tool Includes products (PV modules, charge controller, inverter, battery and diesel generator) which can be obtained from the market with their detail. This software presents a guideline for photovoltaic system integrator to match the load requirement to design the effective size of components and system configuration, in hybrid PV–Diesel system. The ratio of photovoltaic solar energy to diesel generators is introduced by considering the contribution of hybrid system energy.


2021 ◽  
Vol 12 (1) ◽  
pp. 28
Author(s):  
Hafiz Muhammad Tayyab ◽  
Yaqoob Javed ◽  
Irfan Ullah ◽  
Abid Ali Dogar ◽  
Burhan Ahmed

A major problem in the photovoltaic (PV) system is to determine the maximum power point (MPP) and to overcome the limitations of environmental change. To resolve the limitation of different techniques with high convergence rate and less fluctuations, a hybrid model of fractional open circuit voltage is proposed. For partial shading, incremental conductance is used. The proposed technique is extremely useful, provides high efficiency, and takes less time to achieve the MPP. The tenacity of the proposed method has been checked using MATLAB/Simulink, which clearly shows that the proposed technique has high efficiency compared to other MPP tracking methods.


Sign in / Sign up

Export Citation Format

Share Document