Effect of ZrO2 Nanofiller on the Physical Properties of Epoxy Composites: Mechanical, Thermal and Dielectric

2021 ◽  
Vol 14 (5) ◽  
pp. 425-435

Abstract: In this present work, Zirconia nanoparticles were prepared by precipitation method, Zirconium Oxychloride (ZrOCl2.8H2O) and ammonia (NH3) as starting materials. The synthesized Zirconia nanoparticles were characterized by XRD and the grain size in nanoscale was confirmed. The sheets of neat epoxy resin and epoxy with addition of ZrO2 nanoparticles are primed by solution casting method. The structures of epoxy polymer and hardener were found out using FTIR analysis. The thermal properties were analyzed using Thermo Gravimetric Analysis (TGA) and Differential Thermal Analysis (DTA). Thermo gravimetric analysis has been employed to investigate the thermal characteristics and their mode of thermal degradation. Differential thermal analysis has been used to determine the glass transition temperature of epoxy nanocomposites. The mechanical properties like tensile and flexural studies were analyzed and thus influences of nanofiller loading on these parameters were found to be very low. Keywords: Epoxy, ZrO2 nanoparticles, Nanocomposites, Thermal stability, Dielectric properties, Tensile strength, Flexural strength.

2016 ◽  
Vol 27 (2) ◽  
pp. 60 ◽  
Author(s):  
Rudzani A Sigwadi ◽  
Sipho E Mavundla ◽  
Nosipho Moloto ◽  
Touhami Mokrani

Zirconia nanoparticles were prepared by the precipitation and ageing methods. The precipitation method was performed by adding ammonium solution to the aqueous solution of zirconium chloride at room temperature. The ageing method was performed by leaving the precipitate formed in the mother liquor in the glass beaker for 48 hours at ambient temperatures. The nanoparticles from both methods were further sulphated and phosphated to increase their acid sites. The materials prepared were characterised by X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), Brunauer-EmmettTeller (BET), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) methods. The XRD results showed that the nanoparticles prepared by the precipitation method contained mixed phases of tetragonal and monoclinic phases, whereas the nanoparticles prepared by ageing method had only tetragonal phase. The TEM results showed that phosphated and sulphated zirconia nanoparticles obtained from the ageing method had a smaller particle size (10–12 nm) than the nanoparticles of approximately 25–30 nm prepared by precipitation only. The BET results showed that the ZrO2 nanoparticles surface area increased from 32 to 72 m2/g when aged.


2015 ◽  
Vol 33 (3) ◽  
pp. 560-565 ◽  
Author(s):  
Yifu Zhang ◽  
Xianfang Tan ◽  
Changgong Meng

Abstract The influence of vanadium dioxide VO2(B) on thermal decomposition of ammonium perchlorate (AP) has not been reported before. In this contribution, the effect of VO2(B) nanobelts on the thermal decomposition of AP was investigated by the Thermo- Gravimetric Analysis and Differential Thermal Analysis (TG/DTA). VO2(B) nanobelts were hydrothermally prepared using peroxovanadium (V) complexes, ethanol and water as starting materials. The thermal decomposition temperatures of AP in the presence of I wt.%, 3 wt.% and 6 wt.% of as-obtained VO2<B) nanobelts were reduced by 39 °C. 62 °C and 74 °C, respectively. The results indicated that VO2(B) nanobelts had a great influence on the thermal decomposition temperature of AP Furthermore, the influence of the corresponding V2Os, which was obtained by thermal treatment of VO2(B) nanobelts, on the thermal decomposition of AP was also investigated. The resufs showed that VO2(B) nanobelts had a greater influence on the thermal decomposition temperature of AP than that of V2Os.


2005 ◽  
Vol 19 (27) ◽  
pp. 4021-4046
Author(s):  
D. D. SHIVAGAN ◽  
P. M. SHIRAGE ◽  
S. H. PAWAR ◽  
TANAY SETH ◽  
D. P. AMALNERKAR

The thermo-gravimetric analysis (TGA) and differential thermal analysis (DTA) of the as-deposited and electrochemically oxidized Hg 1 Ba 2 Ca 1 Cu 2 O 6+δ( Hg -1212) samples were carried out in air, flowing oxygen and nitrogen environment in order to estimate the thermal decomposition temperature and hence to maintain the annealing temperature and atmosphere. After annealing, electrochemically synthesized films showed an increase in Tc from 104.7 K to 119 K and Jc values from 1.43×103 to 4.3×103 A/cm 2. Electrochemically oxidized Hg -1212 films in under-, optimally- and over-doped states were irradiated with a Red He – Ne laser (2mW) and the Tc was found to increase from 104.7 K to 106 K and Jc from 1.43×103 to 1.89×103 A/cm 2. The effects of annealing and photo-irradiation on structural, microstructural and superconducting properties of electrochemically synthesized Hg-1212 films were investigated and discussed in detail in this paper.


2011 ◽  
Vol 221 ◽  
pp. 302-307 ◽  
Author(s):  
Hui Huang ◽  
Zhong Cheng Guo ◽  
Wei Zhu ◽  
Fa Chuang Li

Conductive polyaniline/zirconia (PANI/ZrO2) composites have been synthesized by in-situ polymerization of aniline in the presence of ZrO2 nanoparticles. The structure and morph- ology of composites were characterized by Fourier-transform infrared spectra (FTIR), thermo- gravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscope (SEM). The conductivity was also investigated. The results showed that PANI and ZrO2 nanoparticles were not simply blended, and a strong interaction existed at the interface of ZrO2 and PANI. It was probably a composite at molecular level. The composites were more thermal stability than that of the pure PANI. XRD analyses confirmed PANI deposited on the surface of ZrO2 nanoparticles had no effect on crystallization performance of ZrO2 nanoparticles. Electrical conductivity measurements indicated that the conductivity of PANI/ZrO2 composites was much higher than that of PANI and the maximum conductivity obtained was 11.27S/cm at 15 wt% of ZrO2 nanoparticles.


2011 ◽  
Vol 197-198 ◽  
pp. 1049-1052
Author(s):  
Yuan Sun ◽  
Xiu Juan Zhao ◽  
Guo Jun Li ◽  
Rui Ming Ren

The olivine-type LiFePO4powder was prepared by a chemical method using the synthesized FePO41.78H2O, LiOH, citric acid and PEG as raw materials. The synthesized FePO41.78H2O precursor powder was obtained by co-precipitation method. LiFePO4powder was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermo-gravimetric analysis (TGA)/differential scanning calorimetry (DSC). The results showed that the calcined LiFePO4was in a single phase when fabricated by using the synthesized FePO41.78H2O powder at pH of 3.5 in argon atmosphere.


2017 ◽  
Vol 16 (04) ◽  
pp. 1750002 ◽  
Author(s):  
K. Kalpanadevi ◽  
C. R. Sinduja ◽  
R. Manimekalai

The synthesis of CdFe2O4 nanoparticles has been achieved by a simple thermal decomposition method from the inorganic precursor, [CdFe2(cin)3(N2H[Formula: see text]], which was obtained by a simple precipitation method from the corresponding metal salts, cinnamic acid and hydrazine hydrate. The precursor was characterized by hydrazine and metal analyses, infrared spectral analysis and thermo gravimetric analysis. On appropriate annealing, [CdFe2(cin)3(N2H[Formula: see text]] yielded CdFe2O4 nanoparticles. The XRD studies showed that the crystallite size of the particles was 13[Formula: see text]nm. The results of HRTEM studies also agreed well with those of XRD. SAED pattern of the sample established the polycrystalline nature of the nanoparticles. SEM images displayed a random distribution of grains in the sample.


2008 ◽  
Vol 59 (7) ◽  
Author(s):  
Madalina Angelusiu ◽  
Maria Negoiu ◽  
Stefania-Felicia Barbuceanu ◽  
Tudor Rosu

The paper presents the synthesis and characterization of Cu(II), Co(II), Ni(II), Cd(II), Zn(II) and Hg(II) complexes with N1-[4-(4-bromo-phenylsulfonyl)-benzoyl]-N4-(4-methoxyphenyl)-thiosemicarbazide. The new compounds were characterized by IR, EPR, electronic spectroscopy, magnetic moments, thermo-gravimetric analysis and elemental analysis.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1728
Author(s):  
Peng Wen ◽  
Teng-Gen Hu ◽  
Yan Wen ◽  
Ke-Er Li ◽  
Wei-Peng Qiu ◽  
...  

An ethyl acetate extract from of Nervilia fordii (NFE) with considerable suppression activity on lipid peroxidation (LPO) was first obtained with total phenolic and flavonoid contents and anti-LPO activity (IC50) of 86.67 ± 2.5 mg GAE/g sample, 334.56 ± 4.7 mg RE/g extract and 0.307 mg/mL, respectively. In order to improve its stability and expand its application in antioxidant packaging, the nano-encapsulation of NFE within poly(vinyl alcohol) (PVA) and polyvinyl(pyrrolidone) (PVP) bio-composite film was then successfully developed using electrospinning. SEM analysis revealed that the NFE-loaded fibers exhibited similar morphology to the neat PVA/PVP fibers with a bead-free and smooth morphology. The encapsulation efficiency of NFE was higher than 90% and the encapsulated NFE still retained its antioxidant capacity. Fourier transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD) analysis confirmed the successful encapsulation of NFE into fibers and their compatibility, and the thermal stability of which was also improved due to the intermolecular interaction demonstrated by thermo gravimetric analysis (TGA). The ability to preserve the fish oil’s oxidation and extend its shelf-life was also demonstrated, suggesting the obtained PVA/PVP/NFE fiber mat has the potential as a promising antioxidant food packaging material.


Sign in / Sign up

Export Citation Format

Share Document