Albumen-mediated Green Synthesis of ZnFe2O4 Nanoparticles and Their Physico-Chemical Properties

2021 ◽  
Vol 14 (5) ◽  
pp. 445-449

Abstract: Spinel ferrites with general formula AB2O4 possess charming magnetic and electrical properties owing to their thermal and chemical steadfastness. Spinel zinc ferrite (ZnFe2O4) nanoparticles have attracted massive attention due to their unusual amalgamation of properties, especially magnetic properties, where these properties are equipped as suitable candidates in the field of electronics. Here, a simple self-combustion technique is made with the assistance of albumen to synthesize nanocrystalline zinc ferrite (ZnFe2O4) particles. The egg white (albumen) that is used in the synthesis process plays the fuel role in the process of combustion. The results of the powder X-ray diffraction (PXRD) and Fourier Transform Infrared Spectroscopy (FTIR) suggested that the synthesized nanoparticles are of single phase and show spinel structure. The photoluminescence studies reported a doublet peak at around 360-380 nm. The functional groups present in the synthesized nanoparticles were revealed from FTIR data. EDX findings give an account of the percentage composition of the elements Fe, Zn and O present in the synthesized sample. High-resolution Scanning Microscope (HRSEM) reveals the agglomerated coalescence nature of ferrite nanoparticles. Keywords: Ferrite, PXRD, FTIR, HRSEM, EDX Albumen.

Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 678
Author(s):  
Stefano Alberti ◽  
Irene Basciu ◽  
Marco Vocciante ◽  
Maurizio Ferretti

In this contribution, the photoactivity upon activation by simulated sunlight of zinc oxide (ZnO) obtained from two different synthetic pathways (Acetate and Nitrate) is investigated for water purification. Different reagents and processes were exploited to obtain ZnO nanoparticles. Products have been characterized by means of X-Ray Diffraction, Scanning Electron Microscopy along with Energy Dispersive Spectrometer, Dynamic Light Scattering, and Diffuse Reflectance Measurements, to highlight the different outcomes ascribable to each synthesis. A comparison of characteristics and performances was also carried out with respect to commercial ZnO. Nanoparticles of this semiconductor can be obtained as aggregates with different degrees of purity, porosity, and shape, and their physical-chemical properties have been addressed to the specific use in wastewater treatment, testing their effectiveness on the photocatalytic degradation of methylene blue (MB) as a model pollutant. Excluding the commercial sample, experimental results evidenced a better photocatalytic behavior for the ZnO Nitrate sample annealed at 500 °C, which was found to be pure and stable in water, suggesting that ZnO could be effectively exploited as a heterogeneous photocatalyst for the degradation of emerging pollutants in water, provided that thermal treatment is included in the synthetic process.


2013 ◽  
Vol 832 ◽  
pp. 589-595 ◽  
Author(s):  
N.A. Edama ◽  
A. Sulaiman ◽  
K.H. Ku Hamid ◽  
M.N. Muhd Rodhi ◽  
Mohibah Musa ◽  
...  

This study analyzed the effects of sulphuric acid (H2SO4) treatment on pysico-chemical properties and morphological changes of clay obtained from Sg. Sayong, Perak. The clay was ground and sieved to <150μm and treated with different concentrations of H2SO4. The treatment was completed by refluxing the clay with different concentration of H2SO4 (1M, 5M and 10M ) at 100 °C for 4 hours and followed by calcination at 500 °C for 1 hour. The physic-chemical properties and morphological changes of the untreated and treated clay were compared using Surface Area Analyser, X-Ray Diffraction (XRD), Field Emission Scanning Electron Micrograph (FESEM), X-Ray Diffraction (XRD) and Fourier Transformed Infrared Spectroscopy (FTIR). The results showed that acid treatment of 5M increased the surface area from 25 m2/g to 75 m2/g and the pore volume increased from 0.1518 cc/g to 0.3546 cc/g. The nanopore size of the clay decreased from 24.8 nm to 19.4 nm after treated with acid. This can be explained due to the elimination of the exchangeable cations and generation of microporosity. The results of XRF showed SiO2 increased from 58.34% to 74.52% and Al2O3 reduced from 34.6% to 18.31%. The mineral oxides such as Fe2O3, MgO, CaO, K2O and TiO2 also reduced. This concluded that H2SO4 treatment has led to significant removal of octahedral Al3+, Fe3+ cations and other impurities. In conclusion, this study showed the physico-chemical properties and morphology of Sayong clay were improved once treated with H2SO4 and therefore suggests better supporting material for enzyme immobilization.


2017 ◽  
Vol 17 (2) ◽  
pp. 107-110
Author(s):  
K. Stec ◽  
J. Podwórny ◽  
B. Psiuk ◽  
Ł. Kozakiewicz

Abstract Using the available analytical methods, including the determination of chemical composition using wavelength-dispersive X-ray fluorescent spectroscopy technique and phase composition determined using X-ray diffraction, microstructural observations in a highresolution scanning microscope equipped with an X-ray microanalysis system as well as determination of characteristic softening and sintering temperatures using high-temperature microscope, the properties of particular chromite sands were defined. For the study has been typed reference sand with chemical properties, physical and thermal, treated as standard, and the sands of the regeneration process and the grinding process. Using these kinds of sand in foundries resulted in the occurrence of the phenomenon of the molding mass sintering. Impurities were identified and causes of sintering of a moulding sand based on chromite sand were characterized. Next, research methods enabling a quick evaluation of chromite sand suitability for use in the preparation of moulding sands were selected.


2005 ◽  
Vol 492-493 ◽  
pp. 331-334
Author(s):  
Jin Seok Lee ◽  
Sung Churl Choi

Well-crystallized and nano-sized indium tin oxide (ITO) powders were prepared by a solvothermal process from a mixed solution consisting of indium nitrate and tin chloride. The characteristics of the solvothermally synthesized ITO powders were studied to investigate the contribution of the processing variables on the physico-chemical properties of powders. The results of this study show that the nano-sized blue ITO powders with a single phase could be directly obtained by changing the medium from water to organic solvent.


2021 ◽  
Vol 317 ◽  
pp. 53-59
Author(s):  
Muhammad Safwan Sazali ◽  
Muhamad Kamil Yaakob ◽  
Mohamad Hafiz Mamat ◽  
Oskar Hasdinor Hassan ◽  
Muhd Zu Azhan Yahya

In this work, single phase Bismuth Ferrite, BiFeO3 was successfully synthesized by using hydrothermal method assisted with different weight (0.24 g, 0.36 g and 0.48 g) of Chitosan. Potassium hydroxide (KOH) were used as a mineralizer during the synthesis process for the precipitation. The samples were characterized for different properties such as structural and optical properties, and were then compared with previous works. The X-ray diffraction data for all the samples showed that the samples had a single phase belonging to R3c space group with perovskite rhombohedral structure at diffraction angle 32.0° to 32.5° even though the slight presence of secondary phase at diffraction angle 28° was detected. Scanning electron microscope revealed a decrement in particle size as the weight of Chitosan increased indicating effective used of Chitosan in controlling the agglomeration of the particles. All samples BiFeO3 assisted with and without Chitosan showed significant enhancement in energy gap where the obtained results showed a small energy gap values ranging from ~1.22 eV to ~1.88 eV determined from UV-vis absorbance characterization. Therefore, by the addition of Chitosan, the properties of BiFeO3 such as structural and optical have changed as well as preventing from the particle to agglomerate.


2019 ◽  
Vol 6 (2) ◽  
pp. 181823 ◽  
Author(s):  
Guangyu Shi ◽  
Yizhu Qian ◽  
Fengzhi Tan ◽  
Weijie Cai ◽  
Yuan Li ◽  
...  

Oil/water separation is a field of high significance as it might efficiently resolve the contamination of industrial oily wastewater and other oil/water pollution. In this paper, an environmentally-friendly hydrophobic aerogel with high porosity and low density was successfully synthesized with renewable pomelo peels (PPs) as precursors. Typically, a series of sponge aerogels (HPSA-0, HPSA-1 and HPSA-2) were facilely prepared via high-speed dispersion, freeze-drying and silanization with methyltrimethoxysilane. Indeed, the physical properties of aerogel such as density and pore diameter could be tailored by different additives (filter paper fibre and polyvinyl alcohol). Hence, their physico-chemical properties including internal morphology and chemical structure were characterized in detail by Fourier transform infrared, Brunauer–Emmett–Teller, X-ray diffraction, scanning electron microscope, Thermal gravimetric analyzer (TG) etc. Moreover, the adsorption capacity was further determined and the results revealed that the PP-based aerogels presented excellent adsorption performance for a wide range of oil products and/or organic solvents (crude oil 49.8 g g −1 , soya bean oil 62.3 g g −1 , chloroform 71.3 g g −1 etc.). The corresponding cyclic tests showed the absorption capacity decreased slightly from 94.66% to 93.82% after 10 consecutive cycles, indicating a high recyclability.


2019 ◽  
Vol 9 (13) ◽  
pp. 2598 ◽  
Author(s):  
M. J. Hernández-Rodríguez ◽  
R. Santana Rodríguez ◽  
R. Darias ◽  
O. González Díaz ◽  
J. M. Pérez Luzardo ◽  
...  

In this study, mortar specimens were prepared with a cement:sand:water ratio of 1:3:0.5, in accordance with standard EN196-1. Portland CEM I 52.5 R grey (G) and white (W) cements were used, together with normalised sand and distilled water. Different amounts of TiO2 photocatalyst were incorporated in the preparation of the mortar samples. The effect of the addition of TiO2 was studied on mechanical properties of the mortar and cement including compressive and flexural strength, consistency (the flow table test), setting time and carbonation. Characterization techniques, including thermogravimetry, mercury porosimetry and X-ray diffraction spectroscopy (XRD), were applied to study the physico-chemical properties of the mortars. It was shown that adding the photocatalyst to the mortar had no negative effect on its properties and could be used to accelerate the setting process. Specimen photoactivity with the incorporated photocatalyst was tested for NOx oxidation in different conditions of humidity (0% RH and 65% RH) and illumination (Vis or Vis/UV), with the results showing an important activity even under Vis radiation.


2011 ◽  
Vol 236-238 ◽  
pp. 538-542
Author(s):  
Yong Jun Liu

The deactivation behavior of industrial hydrodemetallization catalysts was investigated in the presented work. The main objective of the study is to contribute to a better understanding of the nature of the coke and metal deposition on the used catalysts by applying chemical analysis and various advanced analytical techniques, such as X-ray diffraction analysis (XRD), thermal gravimetric analysis (TGA), transmission electron microscopy (TEM), and solid-state carbon-13 nuclear magnetic resonance spectroscopy (13C NMR). The results are discussed scientifically based on the physico–chemical properties of origin and used catalysts.


2015 ◽  
Vol 659 ◽  
pp. 604-608 ◽  
Author(s):  
Jiruntanin Kanoksinwuttipong ◽  
Wisanu Pecharapa ◽  
Russameeruk Noonuruk ◽  
Wicharn Techitdheera

Indium oxide:tin nanoparticles were synthesized by co-precipitation method using InCl3 and SnCl4·5H2O as starting precursor with different molar ratios of Sn:In. The crystalline structure, optical properties, chemical bonding and morphologies of all samples were characterized by X-ray diffraction (XRD), UV–vis spectrometer, Raman spectroscopy and field emission scanning electron microscope, respectively. The XRD results show that the crystallinity of as-synthesized powders was initially amorphous phase. After calcination at 400 °C for 2 h, a single phase ITO powder with 10% (mol%) SnO2 was obtained. The particle size of each sample is approximately 20-25 nm. The color of indium oxide:tin nanopowders after heat treatment changed from white to yellow due to the substitution of oxygen vacancies in the sample. After calcination, the intensity of Raman peak significantly decreased with increasing amount of Sn loading. This phenomenon indicates that ion substitution may occur during the synthesis process. Moreover, it is noticed that the optical absorbance of obviously changed with increasing Sn loading.


2020 ◽  
pp. 13-21
Author(s):  
Le Huy Tran ◽  
Thi Ngoc Mai Tran ◽  
Tuan Vu Anh ◽  
Pham Quoc Khanh ◽  
Thi Minh Thu Nguyen ◽  
...  

Dichromate anions were intercalated between two consecutive hydroxide layers of [Mg0.6Al0.4(OH)2]0.40+ via co-precipitation at different pH conditions. The physico-chemical properties of the obtained solids were examined by physical methods such as X-ray diffraction (XRD), Infrared (IR), Scanning Electron Microscopy (SEM), Brunauer-Emmett-Teller (BET) and Energy-Dispersive Spectroscopy (EDS). The experimental results indicated that the amount of dichromate anions in the catalysts varies with the pH media. Also, the morphology, structure and chemical composition of the materials depends strongly on the preparation conditions. The Mg-Al-Cr2O7 hydrotalcite-like compounds are used as heterogeneous catalysts for the styrene oxidation with H2O2 at mild conditions. The styrene conversion is about 20-50% while styrene selectivity remains rather high.


Sign in / Sign up

Export Citation Format

Share Document