scholarly journals Performance of Rambutan Seed Extracts as Iron and Manganese Removal in Drinking Groundwater well in Tanah Merah, Kelantan

2017 ◽  
Vol 5 (2) ◽  
pp. 79-82
Author(s):  
Yap L.L ◽  
Aweng Eh Rak ◽  
Liyana A.A

Groundwater is a major source of drinking water supply espeacially in Kelantan due to shortageof clean surface water. However, groundwater quality is found to be high in hardness, salinity,and concentration of iron, manganese, ammonium and flouride especially at rural area inKelantan. Therefore, groundwater should be treated before it can be used for domestic purposes.Currently, water treatment used chamicals for heavy metals removal although chemicals wereknown to be hazardous for human consumption. Thus, plant based material was proposed to givemore environmental friendly approach for drinking water treatment especially groundwater. Theobjective of this study is to determine the performance of extracted rambutan seed in removal ofiron (Fe) and manganese (Mn) from groundwater. Groundwater sample were collected fromseleced wells in Tanah Merah district, Kelantan, Malaysia. Iron and manganese contents ofgroundwater samples were measured before and after the jar test in the laboratory by usingAtomic Absorption Spectrophotometer (AAS). All water samples were tested with differentconcentration of rambutan seed cruded extracts. The experiments were carried out with coagulantdosage of 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 mg/L with the interval of 1.0 mg/L. The results showthat, Nephelium lappaceum seed can remove up to 91.38% of Fe in groundwater sample by usingoptimal dosage of l/L. The seed also able to remove up to 90.91% Mn in groundwater samplesusing the optimal dosage 5mg/L. The high removal rate for both iron and manganese reflectedthat rambutan seed has a potential to replace chemicals coagulant in water treatment. Hopefullywith this finding, peopl will have access to reasonable price, clean and safe drinking water and thegoverment can also save a few thousand ringgit for treatment expenses.

2021 ◽  
Author(s):  
Qihui Gu ◽  
Jun Ma ◽  
Jumei Zhang ◽  
Weipeng Guo ◽  
Huiqing Wu ◽  
...  

Abstract Sand filter (SFs) are common treatment processes for nitrogen pollutants removal in drinking water treatment plants (DWTPs). However, the mechanisms on the nitrogen-cycling role of SFs are still unclear. In this study, 16S rRNA gene amplicon sequencing was used to characterise the diversity and composition of the bacterial community in SFs from DWTPs. Additionally, metagenomics approach was used to determine the functional microorganisms involved in nitrogen cycle in SFs. Our results showed that Proteobacteria, Acidobacteria, Nitrospirae, and Chloroflexi dominated in SFs. Subsequently, 85 high-quality metagenome-assembled genomes (MAGs) were retrieved from metagenome datasets of selected SFs involving nitrification, assimilatory nitrogen reduction, and denitrification processes. Read mapping to reference genomes of Nitrospira and the phylogenetic tree of the ammonia monooxygenase subunit A gene, amoA, suggested that Nitrospira is abundantly found in SFs. Furthermore, according to their genetic content, a nitrogen metabolic model in SFs was proposed using representative MAGs and pure culture isolates. Quantitative real-time polymerase chain reaction (PCR) showed that ammonia-oxidising bacteria (AOB) and archaea (AOA), and complete ammonia oxidisers (comammox) were ubiquitous in the SFs, with the abundance of comammox being higher than that of AOA and AOB. Moreover, we identified a bacterial strain with a high NO3-N removal rate as Pseudomonas sp., which could be applied in the bioremediation of micro-polluted drinking water sources. Our study provides insights into functional nitrogen-metabolising microbes in SFs of DWTPs.


2021 ◽  
Vol 9 (01) ◽  
pp. 512-524
Author(s):  
Konan Lopez Kouame ◽  
◽  
Nogbou Emmanuel Assidjo ◽  
Andre Kone Ariban ◽  
◽  
...  

This article presents an optimization of the drinking water treatment process at the SUCRIVOIRE treatment station. The objective is to optimize the coagulation and flocculation process (fundamental process of the treatment of said plant)by determining the optimal dosages of the products injected and then proposes a program for calculating the optimal dose of coagulant in order to automatically determine the optimal dose of the latter according to the raw water quality. This contribution has the advantage of saving the user from any calculations the latter simply enters the characteristics of the raw effluent using the physical interface of the program in order to obtain the optimum corresponding coagulant concentration. For the determination of the optimal coagulant doses, we performed Jar-Test flocculation tests in the laboratory over a period of three months. The results made it possible to set up a polynomial regression model of the optimal dose of alumina sulfate as a function of the raw water parameters. A program for calculating the optimal dose of coagulant was carried out on Visual Basic. The optimal doses of coagulant obtained vary from 25, 35, 40 and 45 mg/l depending on the characteristics of the raw effluent. The model obtained is: . Finally, verification tests were carried out using this model on the process. The results obtained meet the WHO drinkability standards for all parameters for a settling time of two hours.


2021 ◽  
Author(s):  
Gede H Cahyana

Helical or spiral coiled flocculator have not been applied in drinking water treatment yet in Indonesia. There were only a few articles discussed it with different themes like hydrodynamic, floc characteristic, and performance. This study was done to know the efficiency (performance) of helical flocculator with parameters velocity gradient, pipe and helical diameter, flowrate, detention time, coagulant dose. The study was divided into two steps: Jar test to determine the optimum dose of coagulant and flocculation experiments to evaluate the helical flocculator efficiency. Efficiencies were in the range of medium to high. On flowrate 13 ml/second was obtained good results for two pipe sizes but different in helical diameters. In 0.5 inch pipe with 0.8 m helical diameter the turbidity reduction efficiencies were 72.4% and 73.9% and sediment volume were 18.3 ml and 20.0 ml. In 0.625 inch pipe with 0.4 m helical diameter the turbidity reduction efficiencies were 76.7% and 78.5% and sediment volume were 14.3 ml and 19.7 ml. The optimum velocity gradient about 64.9–69.6 persecond and detention time about 438–649 seconds. The results showed that helical flocculator was effective for floc formation. Flowrate, pipe diameter, helical diameter were three key parameters to perform helical flocculator.


Author(s):  
Grasiele Scaramal Madrona ◽  
Rosangela Bergamasco ◽  
Vanessa Jurca Seolin ◽  
Marcia R. Fagundes Klen

The main objective of the present work is to study the efficiency in terms of removing color and turbidity of raw water in order to obtain drinking water. For this purpose, different coagulant solutions were obtained utilizing different salts, NaCl, KCl and MgCl2, in concentration 1M, distilled water combined with the Moringa oleifera Lam seed. Each coagulant solution obtained was studied with concentrations ranging from 25 to 300 mg/L of Moringa in salt solution. The tests were performed in the “Jar Test,” and the efficiency of the process was assessed in terms of color and turbidity. The results show no difference in the coagulation for extracts using the salts KCl, NaCl and MgCl2 1 Molar. The best results were found employing the coagulant solutions extracted with salt, in various concentration ranges (125 to 300 mg/L); as the concentration of protein in solution becomes higher, the greater is its power as a coagulant. The lowest content of protein was found in the solution extracted with water, which consequently had the lowest values of color and turbidity removal. Finally, the results obtained by the present work show that the seed of Moringa oleifera Lam is a great alternative for use as a coagulant in drinking water treatment systems.


2020 ◽  
Author(s):  
Katerina Novotna ◽  
Lenka Cermakova ◽  
Lenka Pivokonska ◽  
Martin Pivokonsky

<p>Microplastics (MPs) are being detected in aquatic environments worldwide, including seawaters and freshwaters. Moreover, some scarce studies have also reported the presence of MPs in potable water, both in water from public water supply and in bottled water. Despite any potential adverse effects on human health are not known yet, the occurrence of MPs in drinking water raises considerable attention. Drinking water treatment plants (DWTPs) pose a barrier for MPs to pass from raw water to treated water intended for human consumption; thus, the fate of MPs entering DWTPs is of a great interest. In order to encapsulate current knowledge in this regard, and so as to identify research needs in this filed, more than 100 studies were reviewed to provide concise conclusions. Focus was laid on: (i) summarizing available information on MP abundance and character in water resources and in drinking water; (ii) combining research results on MP contents at the inflow and outflow of DWTPs and on MP removal by distinct treatment technologies; (iii) comparing MPs to other common pollutants, the removal of which is commonly addressed at DWTPs; and (iv) providing an insight into the fate of MPs at waste water treatment plants (WWTPs), that act as a barrier for transition of MPs from waste to the nature, thus, have an “opposite” position than DWTPs. Additionally, the topic of (v) fate of MPs in DWTP and WWTP sludge was also put forward. This review brings together valuable information regarding the MP occurrence, character, and fate in freshwater aquatic environments in relation to the MP appearance at water treatment facilities, i.e. DWTPs and WWTPs, that may act as both sink and source of this emerging pollutant. Thus, the “cycle” of MPs between natural water bodies and “water in use by humans” is proposed.</p>


2013 ◽  
Vol 48 (1) ◽  
pp. 30-39 ◽  
Author(s):  
Ping Lu ◽  
Tao Yuan ◽  
Qiyan Feng ◽  
Aiqin Xu ◽  
Jiayuan Li

In this paper, outbreaks of cryptosporidiosis in swimming pools in the last 20 years are summarized. Cryptosporidium oocysts are very resistant to many disinfectants, including chlorine, one of the most widely-used disinfectants in swimming pools. Ozone or UV is shown to inactivate Cryptosporidium, while not effective to newly introduced Cryptosporidium and bacteria because of no residual ozone or UV in the treated swimming pool water. Additionally, swimming pool sand filters or cartridge filters are not able to effectively remove Cryptosporidium (removal rate <50%). Above 99% Cryptosporidium removals are achieved in drinking water treatment, but swimming pool water treatment is different from drinking water treatment: no coagulation is performed prior to filtration in most US swimming pools, filtration rate is four to five times higher for swimming pool water treatment compared with drinking water treatment, and the input compounds and microorganisms from bathers continuously recirculate in the swimming pool. Moreover, up-to-date Cryptosporidium or Cryptosporidium surrogate removals from swimming pools are discussed, and alternative swimming pool treatment techniques are reviewed.


Author(s):  
Mu Liu ◽  
Shaohua Wang ◽  
Tongchun Wang ◽  
Mengyuan Duan ◽  
Yingqiang Su ◽  
...  

Abstract By analyzing and comparing the pressurized-pot microfiltration (MF) system and the ultrafiltration membrane as the pretreatment technology of the nanofiltration (NF) system through pilot testing, the research demonstrates the feasibility of combined technology of NF with pressurized-pot MF for the practical application in engineering. The testing result indicates that the combined technology performs over 90% removal rate for organic substances and humus (UV254) and 70–80% removal rate for disinfection by-products including chloroform, bromoform and carbon tetrachloride. In addition, the combined technology also shows 70% minimum removal rate for pigments including chlorophyll and phycocyanobilin, 20–60% removal rate for water hardness, over 95% removal rate for sulfates which occupies the major part of bivalent salts, and 50–70% removal rate for odorous substances. Based on the pilot testing results, a new water purification process, which is sequentially combined by the conventional drinking water treatment technology, pressurized-pot MF and NF, is creatively applied in the large-scale engineering project of drinking water advanced treatment of Zhangjiagang Third Water Plant for the first time in China. The designed water-production amount of this project is 100 thousand tons per day, and the project is aimed at reforming and upgrading the drinking water treatment technology which is currently used in the Zhangjiagang Third Water Plant. The recovery rate of the NF system applied in the project is able to reach 90%, and the predicted electricity consumption of pressurized-pot MF system and NF system is, respectively, 0.003 and 0.197 kWh/ton of water. After accomplishing the project, Zhangjiagang Third Water Plant will be capable of supplying drinking water with higher quality and will simultaneously possess higher capability of replying to water contamination emergencies.


2019 ◽  
Vol 6 (1) ◽  
pp. 53-61 ◽  
Author(s):  
Bahman Masoomi ◽  
Neamatollah Jaafarzadeh ◽  
Tayebeh Tabatabaie ◽  
Esmaeil Kouhgardi ◽  
Sahand Jorfi

Background: Ozone can be used as a single technology or in combination with other processes to improve the coagulation- flocculation or biodegradability in order to remove pollutants in natural water treatment. Methods: In this study, the effects of pre-ozonation with coagulant substances on the quality parameters of drinking water were investigated using humic acid, kaolin, clay, and green algae in a pilot scale. This study was conducted under laboratory conditions (at both acidic and alkaline pH in different dosages of ozone and coagulant at ozone contact time with simulated water sample (5-20 minutes) in different scenarios). Results: The highest removal efficiency of parameters in the state of pre-ozonation alone and preozonation with a coagulant was observed at contact time of 20 minutes, ozone dosage of 5 g/h, coagulant dosage of 25 mg/L, at alkaline pH along with a decrease in temperature. So that, the average removal rate of turbidity, total organic carbon (TOC), color, and chlorophyll a in contact time of 20 minutes was 76.9%, 52.8%, 66.6%, and 85%, respectively. However, compared to ozonation under similar conditions, the reduction in turbidity, TOC, color, and chlorophyll a was 36.13%, 24.4%, 32.13%, and 79.6%, respectively. Also, it was revealed that pre-ozonation with coagulant could effectively improve the removal of parameters. Conclusion: However, since pre-ozonation can be effectively used to improve the coagulation efficacy in the drinking water treatment, the pre-ozonation combined with coagulation is proposed as an alternative to conventional coagulation to improve the process of drinking water treatment plant.


Sign in / Sign up

Export Citation Format

Share Document