scholarly journals Blue whales off the Southern coast of Sri Lanka during the Southwest Monsoon Season

2020 ◽  
Vol 21 (1) ◽  
pp. 1-7
Author(s):  
Grace Russell ◽  
Marcus Bridge ◽  
Maja Nimak-Wood

Observations of 37 individual blue whales (Balaenoptera musculus) were recorded off the southern coast of Sri Lanka during the Southwest Monsoon Season (SWM). Sightings were made during a scientific geophysical survey campaign conducted in July and August 2017. Whilst blue whales are regularly recorded on the continental slope of southern Sri Lanka during the Northeast Monsoon Season (NEM) (December - March) and during the two inter-monsoonal periods (March - April and September - October), limited data is available for the SWM (May - September) mostly due to unfavourable weather conditions and very little survey effort. In the northern hemisphere blue whales undertake seasonal migrations from higher latitude feeding grounds to lower latitude breeding and wintering areas. However it has been suggested that a population of blue whales in the Northern India Ocean (NIO) remains in lower latitudes year round taking advantage of the rich upwelling areas off Somalia, southwest Arabia and western Sri Lanka. Data from this study nevertheless support a theory that a certain number of individuals remain off the southern coast off Sri Lanka during the SWM, suggesting that the productivity in this region is sufficient to support their year-round presence. This study therefore fills a knowledge gap regarding the presence and movement of blue whales in the NIO highlighting the importance of data obtained from platforms of opportunity.

2020 ◽  
Vol 20 (2) ◽  
pp. 129-141
Author(s):  
Tran Anh Tuan ◽  
Vu Hai Dang ◽  
Pham Viet Hong ◽  
Do Ngoc Thuc ◽  
Nguyen Thuy Linh ◽  
...  

In this article, the sea surface temperature trends and the influence of ENSO on the southwest sea of Vietnam were analyzed using the continuous satellite-acquired data sequence of SST in the period of 2002–2018. GIS and average statistical methods were applied to calculate the average monthly and seasonal sea surface temperature, the seasonal sea surface temperature anomalies for each year and for the whole study period. Subsequently, the changing trends of sea surface temperature in the northeast and southwest monsoon seasons were estimated using linear regression analysis. Research results indicated that the sea surface temperature changed significantly throughout the calendar year, in which the maximum and minimum sea surface temperature are 31oC in May and 26oC in January respectively. Sea surface temperature trends range from 0oC/year to 0.05oC/year during the Northeast monsoon season and from 0.025oC/year to 0.055oC/year during the southwest monsoon season. Results based on the Oceanic Niño Index (ONI) analysis also show that the sea surface temperature in the study area and adjacent areas is strongly influenced and significantly fluctuates during El Niño and La Niña episodes.


2015 ◽  
Vol 15 (16) ◽  
pp. 22419-22449 ◽  
Author(s):  
Y. Fujii ◽  
S. Tohno ◽  
N. Amil ◽  
M. T. Latif ◽  
M. Oda ◽  
...  

Abstract. In this study, we quantified carbonaceous PM2.5 in Malaysia through annual observations of PM2.5, focusing on organic compounds derived from biomass burning. We determined organic carbon (OC), elemental carbon (EC) and concentrations of solvent-extractable organic compounds (biomarkers derived from biomass burning sources and n-alkanes). We observed seasonal variations in the concentrations of pyrolyzed OC (OP), levoglucosan (LG), mannosan (MN), galactosan, syringaldehyde, vanillic acid (VA) and cholesterol. The average concentrations of OP, LG, MN, galactosan, VA and cholesterol were higher during the southwest monsoon season (June–September) than during the northeast monsoon season (December–March), and these differences were statistically significant. Conversely, the syringaldehyde concentration during the southwest monsoon season was lower. The PM2.5 OP/OC4 mass ratio allowed distinguishing the seven samples, which have been affected by the Indonesian peatland fires (IPFs). In addition, we observed significant differences in the concentrations between the IPF and other samples of many chemical species. Thus, the chemical characteristics of PM2.5 in Malaysia appeared to be significantly influenced by IPFs during the southwest monsoon season. Furthermore, we evaluated two indicators, the vanillic acid/syringic acid (VA/SA) and LG/MN mass ratios, which have been suggested as indicators of IPFs. The LG/MN mass ratio ranged from 14 to 22 in the IPF samples and from 11 to 31 in the other samples. Thus, the respective variation ranges partially overlapped. Consequently, this ratio did not satisfactorily reflect the effects of IPFs in Malaysia. In contrast, the VA/SA mass ratio may serve as a good indicator, since it significantly differed between the IPF and other samples. However, the OP/OC4 mass ratio provided more remarkable differences than the VA/SA mass ratio, offering an even better indicator. Finally, we extracted biomass burning emissions' sources such as IPF, softwood/hardwood burning and meat cooking through varimax-rotated principal component analysis.


MAUSAM ◽  
2022 ◽  
Vol 46 (4) ◽  
pp. 377-382
Author(s):  
S. K. SUBRAMANIAN ◽  
V. N. THANKAPPAN

The rainfall during southwest monsoon season over Tamilnadu is quite significant from the point of view of water storage in major reservoirs as northeast monsoon rainfall, which is about half of the annual rainfall, is not stable enough due to its large interannual variability. The southwest monsoon rainfall, on the other hand, is more stable. The north-south oriented trough over Tamilnadu and adjoining Bay togetherwith upper air cyclonic circulation/trough in lower tropospheric levels account for three fourths of significant rainfall occurrence during southwest monsoon season. Rainfall during southwest monsoon and northeast monsoon seasons was found to be independent with a small negative correlation of -0.18. This shows that the southwest monsoon rainfall may not be of much use to predict the pattern of northeast monoon rainfall over Tamilnadu.  


2021 ◽  
Vol 16 (6) ◽  
pp. 1027-1038
Author(s):  
Dilaj Maduranga ◽  
Mahesh Edirisinghe

This study reveals the spatiotemporal distribution of lightning activities over Bandaranaike International Airport, the main international airport of Sri Lanka. Lightning flash data was acquired from the Lightning Imaging Sensor (LIS) on Tropical Rainfall Measuring Mission (TRMM) of NASA to investigate lightning activities from 1998 to 2014 covering an area of 30 km×30 km over the airport. Overhead annual flash density was 8.19 flashes km-2 year-1. The maximum lightning activities (57%) with an overhead flash density of 28.83 flashes km-2 year-1 was recorded in the first inter-monsoon season. The overhead flash density of 5.28 flashes km-2 year-1, 16.36 flashes km-2 year-1 and 7.46 flashes km-2 year-1 were recorded in the southwest monsoon season, second inter-monsoon season, and northeast monsoon season respectively. The month of April accounts for the highest number of lightning activities while maximum lightning flashes (22%) had occurred during 19.00-20.00 Local Time. According to the international climate season, maximum lightning activities over the study area have been recorded from March to May and during this seasonal period, the northern hemisphere is in spring and the southern hemisphere is in autumn. Safety guidelines are proposed to minimize lightning accidents in the airport. It is important to concern the regions with high lightning activity and vulnerable time periods to mitigate lightning accidents and to take adequate safety precautions to ensure the safety of passengers and the working crew to achieve environmental goals of sustainable development in the aviation industry.


2021 ◽  
Vol 13 (15) ◽  
pp. 8303
Author(s):  
Vu Tuan Anh ◽  
Pham Ba Trung ◽  
Kim-Anh Nguyen ◽  
Yuei-An Liou ◽  
Minh-Thu Phan

This paper aims to identify the causes and sources of erosion and deposition at small estuaries in southern central Vietnam under human intervention. The jetty built at the Tam Quan river mouth (Binh Dinh Province, Vietnam) serves as the base for the study. After its completion at the end of 2009, the hydrodynamic and erosion-deposition processes in the region have been significantly altered. Inside the estuary, the waves are not influenced, but the currents are increased during the ebb tide period and decreased during the flood tide timeframe. During the southwest monsoon, the jetty could cause an increase in the deposition process in both frequency and area, whereas the erosion process tends to narrow the area and increase the frequency on the north coast. In contrast, both deposition and erosion processes are increased on the southern coast. About 5859 m3 of sediments are deposited in the channel gate mainly by local sources. During the northeast monsoon, both deposition and erosion processes are located over a narrow area with frequency increased on the north coast, whereas the deposition process is narrowed with higher frequency on the southern coast. The total amount of sediment deposited at the estuary is 56,446 m3, of which 74.2% is from the onsite erosion material, 15.8% from the river and 10% from the longshore transportation. Generally, due to mainly erosion-deposition processes, sediment volume is accumulated during the northeast monsoon with amount 9.6 times more than that the southwest monsoon. The erosion-deposition processes are contributed to by poor practical management and local human activities inland and in the coastal regions, as well as the natural situation, resulting in serious impacts on society, the economy and the environment. Hence, the governance of the erosion-deposition processes and sediment load in small estuaries appear to contribute to the master plan for the local sustainable development of society and the economy.


Atmosphere ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 378 ◽  
Author(s):  
Channa Rodrigo ◽  
Sangil Kim ◽  
Il Jung

This study aimed to determine the predictability of the Weather Research and Forecasting (WRF) model with different model physics options to identify the best set of physics parameters for predicting heavy rainfall events during the southwest and northeast monsoon seasons. Two case studies were used for the evaluation: heavy precipitation during the southwest monsoon associated with the simultaneous onset of the monsoon, and a low pressure system over the southwest Bay of Bengal that produced heavy rain over most of the country, with heavy precipitation associated with the northeast monsoon associated with monsoon flow and easterly disturbances. The modeling results showed large variation in the rainfall estimated by the model using the various model physics schemes, but several corresponding rainfall simulations were produced with spatial distribution aligned with rainfall station data, although the amount was not estimated accurately. Moreover, the WRF model was able to capture the rainfall patterns of these events in Sri Lanka, suggesting that the model has potential for operational use in numerical weather prediction in Sri Lanka.


Author(s):  
S. Salihin ◽  
T. A. Musa ◽  
Z. Mohd Radzi

This paper provides the precise information on spatial-temporal distribution of water vapour that was retrieved from Zenith Path Delay (ZPD) which was estimated by Global Positioning System (GPS) processing over the Malaysian Peninsular. A time series analysis of these ZPD and Integrated Water Vapor (IWV) values was done to capture the characteristic on their seasonal variation during monsoon seasons. This study was found that the pattern and distribution of atmospheric water vapour over Malaysian Peninsular in whole four years periods were influenced by two inter-monsoon and two monsoon seasons which are First Inter-monsoon, Second Inter-monsoon, Southwest monsoon and Northeast monsoon.


Author(s):  
U.G.Dilaj Maduranga ◽  
Mahesh Edirisinghe ◽  
L. Vimukthi Gamage

The variation of the lightning activities over Sri Lanka and surrounded costal belt (5.750N-10.000N and 79.50E-89.000E) is studied using lightning flash data of Lightning Imaging Sensor (LIS) which was launched in November 1997 for NASA’s Tropical Rainfall Measuring Mission (TRMM). The LIS data for the period of 1998 to 2014 are considered for this study. The spatial and temporal variation of lightning activities is investigated and respective results are presented. The diurnal variation over the studied area presents that maximum and minimum flash count recorded at 1530-1630 Local Time (10-11UTC) and 0530-0630LT (00-01UTC) respectively. Maximum lightning activities over the observed area have occurred after the 1330LT (08UTC) in every year during the considered time period. The seasonal variation of the lightning activities shows that the maximum lightning activities happened in First inter monsoon season (March to April) with 30.90% total lightning flashes and minimum lightning activities recorded in Northeast monsoon season (December to February) with 8.51% of total lightning flashes. Maximum flash density of 14.37fl km-2year-1 was observed at 6.980N/80.160E in First inter monsoon season. These seasonal lighting activities are agree with seasonal convective activities and temperature variation base on propagation of Intra-Tropical Convection Zone over the studied particular area. Mean monthly flash count presents a maximum in the month of April with 29.12% of lightning flashes. Variation pattern of number of lightning activities in month of April shows a tiny increment during the time period of 1998 to 2014. Maximum annual flash density of 28.09fl km-2yr-1 was observed at 6.980N/80.170E. The latitudinal variation of the lightning flash density is depicted that extreme lightning activities have happened at the southern part of the county and results show that there is a noticeable lack of lightning activities over the surrounded costal belt relatively landmass.


2020 ◽  
Author(s):  
Mirjam van der Mheen ◽  
Erik van Sebille ◽  
Charitha Pattiaratchi

Abstract. A large percentage of global ocean plastic waste enters the northern hemisphere Indian Ocean (NIO). Despite this, it is unclear what happens to buoyant plastics in the NIO. Because the subtropics in the NIO is blocked by landmass, there is no subtropical gyre and no associated subtropical garbage patch in this region. We therefore hypothesise that plastics "beach" and end up on coastlines along the Indian Ocean rim. In this paper, we determine the influence of beaching plastics by applying different beaching conditions to Lagrangian particle tracking simulation results. Our results show that a large amount of plastic likely ends up on coastlines in the NIO, while some crosses the equator into the southern hemisphere Indian Ocean (SIO). In the NIO, the transport of plastics is dominated by seasonally reversing monsoonal currents, which transport plastics back and forth between the Arabian Sea and the Bay of Bengal. All buoyant plastic material in this region beaches within a few years in our simulations. Countries bordering the Bay of Bengal are particularly heavily affected by plastics beaching on coastlines. This is a result of both the large sources of plastic waste in the region, as well as ocean dynamics which concentrate plastics in the Bay of Bengal. During the intermonsoon period following the southwest monsoon season (September, October, November), plastics can cross the equator on the eastern side of the NIO basin into the SIO. Plastics that escape from the NIO into the SIO beach on eastern African coastlines and islands in the SIO or enter the subtropical SIO garbage patch.


Sign in / Sign up

Export Citation Format

Share Document