scholarly journals Hybridization of Brownboost and Random Forest Tree with Gradient Free Optimization for Route Selection

2021 ◽  
pp. 400-407
Author(s):  
P. Tamilselvi ◽  
T.N. Ravi

MANETs are self-organizing network architectures of mobile nodes. Due to node mobility, wireless network topologies dynamically various over time.   A novel link stability estimation technique called Hybridization of Brownboost Cluster and Random Forest Decision Tree with Optimized Route Selection (HBCRFDT-GORS) technique is introduced for increasing the reliable data delivery by eliminating the stale routes in MANET. Brown Boost technique is applied to find the route paths having the smaller number of hop counts to perform the data transmission. After that, the status of the mobile nodes in the selected route paths is determined based on the residual energy and signal strength. Then, a random forest decision tree is applied to correctly identify the stale routes by finding the link failure due to the selfish node and the corruptive node along the route path. Then the broken link is removed from the route path. After eliminating the stale route from the path, the HBCRFDT-GORS technique finds the alternative optimal route through the gradient free optimization.  The proposed HBCRFDT-GORS technique performs stale route elimination and improves reliable data delivery from source to destination. Simulation is conducted on different performance metrics such as routing overhead, packet delivery ratio, packet drop rate, and delay with respect to the number of data packets. The Network simulation results indicate that the HBCRFDT-GORS technique is improving the data delivery and and minimizing the delay as well as reducing the packet losses when compared to the baseline approaches.

Secure data delivery, mobility, link lifetime, energy consumption and delay are the most important parameters to be highly concentrated in the self-organised network named manets. Where in Manets the nodes move unpredictably in any direction with restricted battery life, resulting in frequent change in topology and due to mobility the trust in packet delivery will suffer inside the network. These constraints are studied broadly to ensure the secured data delivery and the lifetime of such networks. In this paper we propose a PFCA(Predicted fitness based clustering) algorithm using fitness value. The cluster heads are selected based on the fitness value of the nodes. Whereas the fitness value is calculated using the trust value, link lifetime for different type of node mobility and energy consumed and the clusters are formed using the PFCA clustering algorithm. The proposed PFC algorithm is experimented in the NS-2 network simulator and the results are compared with the existing PSO-clustering algorithm. The results show the effectiveness of our proposed algorithm in terms of network overhead, average number of clusters formed, average number of re-clustering required, delay and packet delivery ratio.


Chronic Kidney Disease (CKD) is a worldwide concern that influences roughly 10% of the grown-up population on the world. For most of the people the early diagnosis of CKD is often not possible. Therefore, the utilization of present-day Computer aided supported strategies is important to help the conventional CKD finding framework to be progressively effective and precise. In this project, six modern machine learning techniques namely Multilayer Perceptron Neural Network, Support Vector Machine, Naïve Bayes, K-Nearest Neighbor, Decision Tree, Logistic regression were used and then to enhance the performance of the model Ensemble Algorithms such as ADABoost, Gradient Boosting, Random Forest, Majority Voting, Bagging and Weighted Average were used on the Chronic Kidney Disease dataset from the UCI Repository. The model was tuned finely to get the best hyper parameters to train the model. The performance metrics used to evaluate the model was measured using Accuracy, Precision, Recall, F1-score, Mathew`s Correlation Coefficient and ROC-AUC curve. The experiment was first performed on the individual classifiers and then on the Ensemble classifiers. The ensemble classifier like Random Forest and ADABoost performed better with 100% Accuracy, Precision and Recall when compared to the individual classifiers with 99.16% accuracy, 98.8% Precision and 100% Recall obtained from Decision Tree Algorithm


Information ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 504
Author(s):  
Khuram Khalid ◽  
Isaac Woungang ◽  
Sanjay Kumar Dhurandher ◽  
Jagdeep Singh ◽  
Joel J. P. C. Rodrigues

Opportunistic networks (OppNets) are a type of challenged network where there is no guaranteed of end-to-path between the nodes for data delivery because of intermittent connectivity, node mobility and frequent topology changes. In such an environment, the routing of data is a challenge since the battery power of the mobile nodes drains out quickly because of multi-routing activities such as scanning, transmitting, receiving, and computational processing, effecting the overall network performance. In this paper, a novel routing protocol for OppNets called Energy-Efficient Check-and-Spray Geocast Routing (EECSG) is proposed, which introduces an effective way of message distribution in the geocasting region to all residing nodes while saving the energy consumption by restricting the unnecessary packet transmission in that region. A Check-and-Spray technique is also introduced to eliminate the overhead of packets in the geocast region. The proposed EECSG is evaluated by simulations and compared against the Efficient and Flexible Geocasting for Opportunistic Networks (GSAF) and the Centrality- Based Geocasting for Opportunistic networks (CGOPP) routing protocols in terms of average latency, delivery ratio, number of messages forwarded, number of dead nodes, overhead ratio, and hop count, showing superior performance.


Author(s):  
Subhasis Dash ◽  
Saras Kumar ◽  
Manas Ranjan Lenka ◽  
Amulya Ratna Swain

A wireless sensor network is a collection of batterypowered sensor nodes distributed in a geographical area. Inmany applications, such networks are left unattended for along period of time. These networks suffer from the problemslike high energy consumption, high latency time, and end- to-end low packet delivery ratio. To design a protocol that findsa trade-off between these problems is a challenging task. Inorder to mitigate energy consumption issue, different existingMedia Access Control (MAC) protocols such as S-MAC, RMAC,HEMAC, and Congestion-less Single Token MAC protocols havebeen proposed which ensure better packet delivery but fail toensure energy efficiency due to high end-to-end latency. Theproblem of high end-to-end latency is resolved with the existingrouting protocols such as Fault Tolerant Multilevel Routingprotocol (FMS)and Enhanced Tree Routing (ETR) protocol.AS2-MAC and Multi Token based MAC protocol are able toimprove the end-to-end packet delivery ratio. However, thehierarchical network structure used in these protocols increasestime and energy consumption during network reconstruction.This problem was further resolved in Distributed HierarchicalStructure Routing protocol by constructing the network structurein a distributed manner. In all these existing protocols, efficienttoken management and reliable data delivery ratio was notproperly addressed, which in turn consume more energy. So,it is clear that MAC and routing protocols both together cangive better results related to data transmission in WSN. Inorder to achieve the same, in this paper, we propose a reliabledata transmission algorithm that satisfies both routing and MACprotocol to improve the end-to-end data delivery. The proposedprotocol uses different control message exchange that ensures datapacket delivery in each individual levels and it ultimately uses oftokens to ensure reliable data transmission along with reducedtraffic congestion during end-to-end data delivery. The algorithmconsiderably improves the packet delivery ratio along with reduceenergy consumption of each sensor node. Simulation studies ofthe proposed approach have been carried out and its performancehas been compared with the Multi Token based MAC protocol,AS-MAC protocol and ETR routing protocol. The experimentalresults based on simulation confirms that the proposed approachhas a higher data packet delivery ratio.


Author(s):  
Sukant Kishoro Bisoyi ◽  
Sarita Sahu

Routing in a MANET is challenging because of the dynamic topology and the lack of an existing fixed infrastructure. In such a scenario a mobile host can act as both a host and a router forwarding packets for other mobile nodes in the network. Routing protocols used in mobile ad hoc networks (MANET) must adapt to frequent or continual changes of topology, while simultaneously limiting the impact of tracking these changes on wireless resources. The DYMO protocol intended for the use by mobile nodes in wireless multihop ad hoc networks. It can adapt to the changing network topology and determine unicast routes between nodes within the network. This paper presents a comprehensive summarization and a comparative study of the Dynamic MANET On-demand (DYMO) protocol for MANET and simulation analysis of existing protocols DSR and AODV and comparison among them under varying number of nodes. Comparative study shows that DYMO is only a good choice if the nodes are mobile and wireless multihop. We have compared the performance of DSR and AODV with DYMO protocol by taking some performance metrics. Result shows that DYMO simulation provides better performance than DSR when compared in a given network topology with respect to throughput, packet loss, delay, packet delivery ratio, normalized routing load.


2014 ◽  
Vol 672-674 ◽  
pp. 1977-1980 ◽  
Author(s):  
Yan Ming Cheng ◽  
Jing Niu ◽  
Tie Jun Sun

A Mobile Ad hoc network (MANET) is a network consisting of a set of wireless mobile nodes, in which nodes can communicate with each other without centralized control or established infrastructure. To obtain a better understanding of AODV (Ad hoc On-Demand Distance Vector Routing Protocol) and OLSR (Optimized Link State Routing Protocol) routing protocols, different performances are simulated and analyzed using OPNET modeler 14.5 with the various performance metrics, such as PDR (Packet Delivery Ratio), end-to-end delay and routing overhead. Only effect of mobility is analyzed in the paper. As a conclusion, in mobility case, routing overhead is not greatly affected by mobility speed in AODV and OLSR, and the PDR of OLSR is decreased as the node speed increased, while AODV is not changed. As to delay, AODV is always higher than OLSR in both static and mobility cases.


Author(s):  
Mada’ Abdel Jawad ◽  
Saeed Salah ◽  
Raid Zaghal

<p class="0abstractCxSpFirst">Mobile Ad-Hoc Networks (MANETs) are characterized as decentralized control networks. The mobile nodes route and forward data based on their routing information without the need for routing devices. In this type of networks, nodes move in an unstructured environment where some nodes are still fixed, others are moving in a constant velocity, and others move with diverse velocities; and thus, they need special protocols to keep track of network changes and velocity changes among the nodes. Destination Sequenced Distance-Vector (DSDV) routing protocol is one of the most popular proactive routing protocols for wireless networks. This protocol has a good performance in general, but with high speed nodes and congested networks its performance degrades quickly.</p><p class="0abstractCxSpLast">In this paper we propose an extension to the DSDV (we call it Diverse-Velocity DSDV) to address this problem. The main idea is to modify the protocol to include node speed, determine update intervals and the duration of settling time. To evaluate the performance of the new protocol, we have carried a number of simulation scenarios using the Network Simulator tool (NS-3) and measured relevant parameters such as: packet delivery ratio, throughput, end-to-end delay, and routing overhead. We have compared our results with the original DSDV and some of its new variants. The new protocol has demonstrated a noticeable improvement of performance in all scenarios, and the measured performance metrics outperform the others except the average delay where the performance of the new protocol was modest.</p>


Author(s):  
V.J. Chakravarthy

<p>The most challenging concern in MANET is video streaming and it essentially exaggerated by these important factors such as fading, node mobility, interference, topology on change in dynamic, collusion, shadowing in multi-path etc. One of the very attractive and considered for many applications is Mobile Ad Hoc Networks (MANET).Routing Protocol is most significant element which is considered as the MANET. Though, the quite demanding task is video streaming over MANET. This paper have been investigated the analysis of routing protocols over MANET for video streaming. The comparison of the three routing protocols are Secure Dynamic Source Routing (SDSR), Secure Ad hoc On-demand Distance Vector (SAODV) and secured Right angled and Ant search routing Protocol (SRAAA) on the basis of various performance metrics such as Throughput, Packet Delivery Ratio (PDR), Delay, Packet Delivery Fraction (PDF), Energy Consumption, Link Failure and Packet Drop has been obtainable in this paper for supporting video streaming applications. Based on the compared stimulated results concluded that SRAAA routing protocol is comparatively better in performance of all metrics than the SAODV and SDSR routing protocols.</p>


Diabetes is the disease which is growing now a days in human body and there are a number of patient who are suffering by this diabetes in the world. The data related to medical area is very huge which is related to the many disease. So the first thing is that we have to choose a mining tool which give best result for the given databases. Because, this medical data is statistical and most of the researchers using this type of data. Data mining tool is used for the extracting better result in accuracy for the diabetes data base. By the data mining techniques the medical expert and researchers analyze the result and provide the best treatment for this disease. In this paper we are using diabetes data and apply it on the Rattle, an open source tool of data mining and perform two classification methods decision tree and random forest tree for classify the data and show that which classification algorithm is best for diabetes datase


Author(s):  
Ali H. Wheeb ◽  
Marwa T. Naser

Routing protocols are responsible for providing reliable communication between the source and destination nodes. The performance of these protocols in the ad hoc network family is influenced by several factors such as mobility model, traffic load, transmission range, and the number of mobile nodes which represents a great issue. Several simulation studies have explored routing protocol with performance parameters, but few relate to various protocols concerning routing and Quality of Service (QoS) metrics. This paper presents a simulation-based comparison of proactive, reactive, and multipath routing protocols in mobile ad hoc networks (MANETs). Specifically, the performance of AODV, DSDV, and AOMDV protocols are evaluated and analyzed in the presence of varying the number of mobile nodes, pause time, and traffic connection numbers. Moreover, Routing and QoS performance metrics such as normalized routing load, routing packet, packet delivery ratio, packet drop, end-to-end delay, and throughput are measured to conduct a performance comparison between three routing protocols. Simulation results indicate that AODV outperforms the DSDV and AOMDV protocols in most of the metrics. AOMDV is better than DSDV in terms of end-to-end delay. DSDV provides lower throughput performance results. Network topology parameters have a slight impact on AODV Performance.


Sign in / Sign up

Export Citation Format

Share Document