scholarly journals Present of Three-layered hydro-forming analysis of a new hybrid sandwich tubes using finite element method

Author(s):  
J. Shahbazi Karami ◽  
G. Payganeh ◽  
K. Malekzadeh

Multi-layered tube hydro-forming is suitable to produce multi-layered joints to be used in special application in many industries. With using a middle layer of foam and making sandwich structures, tube bending strength increases when external loads are applied. Also because of the foam is high energy absorption, in the pipelines of major industries such as the nuclear, strength increases when natural disasters, especially earthquakes happen. In this paper for the first time, three-layered new sandwich tube (inner layer of copper, middle layer of aluminum foam and outer layer of annealed brass) hydroforming processes were numerically simulated using finite element method by ABAQUS/Explicit 6.10. As the result of three-layered sandwich tube hydro-forming not reported in the literature, the results of this paper are compared with the latest experimental result of bi-layered tube hydro-forming find in literature by approaching the thickness of middle layer to zero. Finite element analysis shows that numerical and experimental results have a good agreement

1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


1998 ◽  
Vol 26 (2) ◽  
pp. 109-119 ◽  
Author(s):  
M. Koishi ◽  
K. Kabe ◽  
M. Shiratori

Abstract The finite element method has been used widely in tire engineering. Most tire simulations using the finite element method are static analyses, because tires are very complex nonlinear structures. Recently, transient phenomena have been studied with explicit finite element analysis codes. In this paper, the authors demonstrate the feasibility of tire cornering simulation using an explicit finite element code, PAM-SHOCK. First, we propose the cornering simulation using the explicit finite element analysis code. To demonstrate the efficiency of the proposed simulation, computed cornering forces for a 175SR14 tire are compared with experimental results from an MTS Flat-Trac Tire Test System. The computed cornering forces agree well with experimental results. After that, parametric studies are conducted by using the proposed simulation.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1388
Author(s):  
Daniele Oboe ◽  
Luca Colombo ◽  
Claudio Sbarufatti ◽  
Marco Giglio

The inverse Finite Element Method (iFEM) is receiving more attention for shape sensing due to its independence from the material properties and the external load. However, a proper definition of the model geometry with its boundary conditions is required, together with the acquisition of the structure’s strain field with optimized sensor networks. The iFEM model definition is not trivial in the case of complex structures, in particular, if sensors are not applied on the whole structure allowing just a partial definition of the input strain field. To overcome this issue, this research proposes a simplified iFEM model in which the geometrical complexity is reduced and boundary conditions are tuned with the superimposition of the effects to behave as the real structure. The procedure is assessed for a complex aeronautical structure, where the reference displacement field is first computed in a numerical framework with input strains coming from a direct finite element analysis, confirming the effectiveness of the iFEM based on a simplified geometry. Finally, the model is fed with experimentally acquired strain measurements and the performance of the method is assessed in presence of a high level of uncertainty.


Author(s):  
J. Poirier ◽  
P. Radziszewski

The natural frequencies of circular saws limit the operating speeds of the saws. Current industry methods of increasing natural frequency include pretensioning, where plastic deformation is induced into the saw. To better model the saw, the finite element model is compared to current software for steel saws; C-SAW, a software program that calculates frequencies for stiffened circular saws. Using C-SAW and the finite element method the results are compared and the finite element method is validated for steel saws.


In this paper, SiCp /Al2O3 composites were fabricated through directed metal oxidation process. Experimental results of these composites validated or compared with Finite Element Method (FEM). Finite Element has become one in all the foremost necessary tools offered to an engineer. The finite part methodology is employed to resolve advanced analysis issues. In this paper, Finite Element Method based ANSYS software is used to FEM model to determine mechanical properties of SiC reinforced Al2O3 matrix composite by changing volume fractions of SiC. The comparison of experimental results with Finite element analysis provides detailed information about the results of these comparisons. The FA was competent of predict the information for several scenario quite fine


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Zhanli Wang ◽  
Yanjuan Hu ◽  
Yao Wang ◽  
Chao Dong ◽  
Zaixiang Pang

In the process of turning, pointing at the uncertain phenomenon of cutting which is caused by the disturbance of random factors, for determining the uncertain scope of cutting force, the integrated symmetric fuzzy number and the finite element method (FEM) are used in the prediction of cutting force. The method used symmetric fuzzy number to establish fuzzy function between cutting force and three factors and obtained the uncertain interval of cutting force by linear programming. At the same time, the change curve of cutting force with time was directly simulated by using thermal-mechanical coupling FEM; also the nonuniform stress field and temperature distribution of workpiece, tool, and chip under the action of thermal-mechanical coupling were simulated. The experimental result shows that the method is effective for the uncertain prediction of cutting force.


Author(s):  
Yuan Jie Lua ◽  
Robert H. Sues

Mechanistic pavement analysis and design based on either layered elastic analysis (LEA) or the finite element method (FEM) is increasingly being used to replace the empirical design process. The simplifying assumptions of a uniform, homogeneous layer of linear material used in LEA can render its analysis inaccurate for real pavement structures. The FEM is more attractive for structural analysis of pavements; the generality of the FEM also allows both the use of comprehensive material models and modeling of the spatial variability that exists in pavement systems. To date, spatial variability and uncertainty are ignored in pavement system finite element analyses. Ignoring spatial variability and uncertainty implies a false sense of accuracy in the results and can lead to inaccurate assessment of the pavement. The first application of the probabilistic finite element method to pavement response analysis and life prediction and the first investigation of the effects of spatial variability on pavement life prediction are presented. It is concluded that the probabilistic FEA, with spatial variability, is a more accurate representation of the true physical condition and leads to results that are less conservative than those obtained with probabilistic LEA.


1989 ◽  
Vol 26 (3) ◽  
pp. 369-374 ◽  
Author(s):  
T. Tamura ◽  
R. Y. S. Pak

This paper describes the formulation of a finite element method by which a limit analysis of a rigid–plastic medium with discontinuities can be performed. The Drucker–Prager criterion is adopted to describe the yielding of the medium, while the Mohr–Coulomb law is used to model the interface of the discontinuous velocity fields. Both associated and nonassociated flow rules are considered in the constitutive characterization. Results are presented to illustrate the influence of discontinuities on the bearing capacity of a surface foundation. Key words: bearing capacity, constitutive law, dilatancy, discontinuity, limit, plasticity, finite element analysis.


2013 ◽  
Vol 805-806 ◽  
pp. 1575-1582 ◽  
Author(s):  
Weerapol Namboonruang ◽  
Rattanakorn Rawangkul ◽  
Wanchai Yodsudjai ◽  
Trakool Aramraks ◽  
Nutthanan Suphadon

Nowadays, materials used to construct house or building wall areconsidered not only in the physical material behaviour but also energy conscious and economic factor. Adding crumb rubber to the brick composite is one of many methods to develop the properties of bricks. As widely known,the finite element method (FEM) is a tool used for finding accurate solutions of the heat transfer equation of materials including the composite bricks. In this paper an investigation of the heat transfer of a soil cement brick containing crumb rubber particles, is presented and compared to results of finite element analysis (FEA) simulation. To determine the effect of crumb rubber to the heat transfer behaviour of soil cement brick, different volume fractions are varied by 10, 20, 30 and 40%. It was reported that a modelling application reveals good correspondence with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document