scholarly journals Effects of Photographic Distance on Tree Crown Attributes Calculated Using UrbanCrowns Image Analysis Software

2011 ◽  
Vol 37 (4) ◽  
pp. 173-179
Author(s):  
Mason Patterson ◽  
P. Eric Wiseman ◽  
Matthew Winn ◽  
Sang-mook Lee ◽  
Philip Araman

UrbanCrowns is a software program developed by the USDA Forest Service that computes crown attributes using a side-view digital photograph and a few basic field measurements. From an operational standpoint, it is not known how well the software performs under varying photographic conditions for trees of diverse size, which could impact measurement reproducibility and therefore software utility. Researchers evaluated the robustness of crown dimension computations made with UrbanCrowns for open-grown sugar maples (Acer saccharum) across a range of sizes from recently transplanted to full maturity. It was found that computations of both crown volume and density were highly repeatable across varying photographic distances. For the majority of tree size classes, crown volume and density varied less than 5% on average over distances ranging from 1.5× to 3.0× tree height; however, crown volume errors of 5%–10% were common for larger trees (>46 cm trunk diameter). UrbanCrowns calculations of crown volume showed strong agreement with calculations derived from equations for geometric solids, both in terms of precision (R2 = 0.9783) and accuracy (B1 = 1.0033). These findings suggest that UrbanCrowns has potential as an objective, reliable method for measuring tree crown attributes that are commonly assessed during urban forest inventories.

2015 ◽  
Vol 73 (5) ◽  
Author(s):  
Muhammad Zulkarnain Abdul Rahman ◽  
Zulkepli Majid ◽  
Md Afif Abu Bakar ◽  
Abd Wahid Rasib ◽  
Wan Hazli Wan Kadir

Detailed forest inventory and mensuration of individual trees have drawn attention of research society mainly to support sustainable forest management. This study aims at estimating individual tree attributes from high density point cloud obtained by terrestrial laser scanner (TLS). The point clouds were obtained over single reference tree and group of trees in forest area. The reference tree is treated as benchmark since detailed measurements of branch diameter were made on selected branches with different sizes and locations. Diameter at breast height (DBH) was measured for trees in forest. Furthermore tree height, height to crown base, crown volume and tree branch volume were also estimated for each tree. Branch diameter is estimated directly from the point clouds based on semi-automatic approach of model fitting i.e. sphere, ellipse and cylinder. Tree branch volume is estimated based on the volume of the fitted models. Tree height and height to crown base are computed using histogram analysis of the point clouds elevation. Tree crown volume is estimated by fitting a convex-hull on the tree crown. The results show that the Root Mean Squared Error (RMSE) of the estimated tree branch diameter does not have a specific trend with branch sizes and number of points used for fitting process. This explains complicated distribution of point clouds over the branches. Overall cylinder model produces good results with most branch sizes and number of point clouds for fitting. The cylinder fitting approach shows significantly better estimation results compared to sphere and ellipse fitting models.   


Author(s):  
Zihui Zhu ◽  
Christoph Kleinn ◽  
Nils Nölke

Abstract Tree crown volume is a fundamental tree characteristic. It correlates to forest biomass production and most relevant ecosystem and environmental functions, such as carbon sequestration and air pollution reduction. When researching these relationships, it is necessary to clearly define and then quantify tree crown variables in a both accurate and operational manner. In this paper, we review the reported literature on the assessment of tree crown volume. First, we compile the varying definitions of crown volume and other tree crown variables that may be used as inputs to quantify crown volume. Then, we examine the data sources for quantifying these variables, including field measurements, terrestrial photographs, aerial photographs and laser scanning. Furthermore, we compare the published approaches on translating these crown variable measurements into tree crown volume. These approaches include the approximation of simple geometric solids, approaches of computational geometry and voxelization. We also compare the reported accuracies and major challenges of these approaches. From this literature review, the reader may craft a suitable approach for the assessment of crown volume.


2009 ◽  
Vol 25 (2) ◽  
pp. 107-121 ◽  
Author(s):  
Jan H. D. Wolf ◽  
S. Robbert Gradstein ◽  
Nalini M. Nadkarni

Abstract:The sampling of epiphytes is fraught with methodological difficulties. We present a protocol to sample and analyse vascular epiphyte richness and abundance in forests of different structure (SVERA). Epiphyte abundance is estimated as biomass by recording the number of plant components in a range of size cohorts. Epiphyte species biomass is estimated on 35 sample-trees, evenly distributed over six trunk diameter-size cohorts (10 trees with dbh > 30 cm). Tree height, dbh and number of forks (diameter > 5 cm) yield a dimensionless estimate of the size of the tree. Epiphyte dry weight and species richness between forests is compared with ANCOVA that controls for tree size. SChao1 is used as an estimate of the total number of species at the sites. The relative dependence of the distribution of the epiphyte communities on environmental and spatial variables may be assessed using multivariate analysis and Mantel test. In a case study, we compared epiphyte vegetation of six Mexican oak forests and one Colombian oak forest at similar elevation. We found a strongly significant positive correlation between tree size and epiphyte richness or biomass at all sites. In forests with a higher diversity of host trees, more trees must be sampled. Epiphyte biomass at the Colombian site was lower than in any of the Mexican sites; without correction for tree size no significant differences in terms of epiphyte biomass could be detected. The occurrence of spatial dependence, at both the landscape level and at the tree level, shows that the inclusion of spatial descriptors in SVERA is justified.


2016 ◽  
Vol 11 (49) ◽  
pp. 4979-4989
Author(s):  
C. Cadori Guilherme ◽  
R. Sanquetta Carlos ◽  
Pellico Netto Sylvio ◽  
Behling Alexandre ◽  
Costa Junior Sergio ◽  
...  

Author(s):  
А. M. Galasheva ◽  
Е. N. Sedov

For the first time in the world and in Russia, Academician of the Russian Academy of Sciences, breeder Evgeny Nikolaevich Sedov created a series of triploid apple cultivars from intervalent crosses 2х × 4х. Triploid apple cultivars bear fruit more regularly, have higher self-fruitfulness and have fruits of high marketability. The article presents data on the study of triploid apple cultivars of the summer ripening period of the VNIISPK breeding - Augusta, Daryona, Maslovskoye, Osipovskoye, Zhilinskoye, Spasskoye and Yablochny Spas as well as the control Canadian cultivar Melba on a semi-dwarf clone rootstock 54-118. Maslovskoye, Zhilinskoye, Spasskoye and Yablochny Spas have immunity to scab. The orchard was planted in 2014, the garden planting scheme was 5 x 2 m. The indicators of the growth force (tree height, crown width and stem diameter) and the yield of trees were studied. At the age of six, the trees of triploid cultivars reached a height of 2.2 m (Maslovskoye) to 3.0 m (Yablochny Spas) on a semi-dwarf rootstock 54-118. The highest indicators of crown volume (3.3-5.3 m3), crown projection area (4.2-5.3 m2) and the cross-sectional area of the stem (46.5-52.8 cm2) were in Osipovskoye, Yablochny Spas, Zhilinskoye and Spasskoye. The highest yield in an average of three years was given by triploid scab-immune apple cultivars on a semi-dwarf rootstock 54-118: Maslovskoye, Zhilinskoye, Spasskoye and Yablochny Spas.


2015 ◽  
Vol 41 (5) ◽  
Author(s):  
Edward Gilman ◽  
Maria Paz ◽  
Chris Harchick

Plants were grown in a 2 × 2 factorial combination of planting depth in nursery containers and at a landscape installation to study effects on root architecture, growth, and mechanical stability of Magnolia grandiflora L. Planting depth into containers or landscape soil had no impact on bending stress to tilt trunks 40 months after landscape planting, and impacted neither trunk diameter nor tree height growth 68 months later. Trees planted 128 mm deep into 170 L containers had more circling roots at landscape planting and 68 months later than trees planted shallow in containers. Root pruning at landscape planting reduced the container imprint rating on the root system to one-third of that absent root pruning with only a 4 mm reduction in trunk diameter growth over 68 months. Improvement in root architecture from root pruning likely outweighs the rarely encountered downside of slightly less anchorage in an extreme weather event simulated by winching trunks. Trees planted 5 cm above grade were slightly—but significantly—less stable in landscape than trees planted deeper (10 cm below grade). Root pruning at planting to remove roots on root ball periphery appeared to improve root architecture while only slightly impacting growth and anchorage.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tijana Narandžić ◽  
Mirjana Ljubojević ◽  
Jovana Ostojić ◽  
Goran Barać ◽  
Vladislav Ognjanov

Abstract Severe climate alterations that seriously challenge fruit production, combined with the demand for healthy, pesticide-free fruits, continuously direct rootstock/cultivar selection towards high adaptable varieties breeding. This study aimed to investigate the rootstocks’ influence on the performance of grafted ‘Summit’ cherry trees, including potentially dwarfing Prunus cerasus, Prunus fruticosa and Prunus mahaleb rootstock candidates. Anatomical properties of rootstock and scion stems were investigated to determine variation among different rootstocks and scion-rootstock combinations and to establish the link between trunk hydraulic conductivity, effective tree crown volume and yielding potential. Cross-section anatomical characteristics varied significantly both in rootstock and scion stems, indicating a clear influence of rootstock genotype on grafted sweet cherry trees. It was observed that all investigated cherry rootstock candidates belong to the low-vigorous rootstocks, based on the estimated effective crown volume of grafted trees compared to ‘Gisela 5’, with values ranging from 0.86 to 2.97 m3 in the fifth year after planting. Results showed a statistically significant positive correlation between trunk hydraulic conductivity, effective tree crown volume and yielding potential, with correlation coefficients up to 0.96. Significantly higher effective crown volume and trunk hydraulic conductance of trees grafted on P. cerasus compared to the trees on control, as well as highest yielding potential, showed better adaptation of these rootstock candidates in the trial without irrigation implemented. It was found that PC_05_04 rootstock candidate could be considered as the most appropriate choice when raising the high-density sweet cherry plantations, due to assessed parameters of vegetative and generative growth.


2008 ◽  
Vol 26 (4) ◽  
pp. 197-203
Author(s):  
A.K. Hagan ◽  
J.R. Akridge ◽  
K.L. Bowen

Abstract Impact of nitrogen (N) rate on spot anthracnose, powdery mildew, and Cercospora leaf spot as well as their impact on the growth of field-grown ‘Cloud 9’ and ‘Cherokee Chief’ flowering dogwood was assessed in 2003, 2004, and 2005. From 2001 to 2005, ammonium nitrate was applied at 4.1, 8.3, 16.5, 33.0 and 66.0 g N·m−2 (37.5, 75, 150, 300, 600 lb N·A−1). Heritage 50W fungicide was applied to one ‘Cherokee Chief’ and ‘Cloud 9’ flowering dogwood in each plot, while the second was untreated. Powdery mildew and Cercospora leaf spot were impacted by N rate more than spot anthracnose. In two of three years, powdery mildew intensified, particularly on the non-treated trees, as N rates increased. Cercospora leaf spot intensity (AUDPCI) and defoliation (AUDPCD) on the fungicide-treated and non-treated trees was influenced by N-rate in two of three and one of three years, respectively. Regardless of fungicide treatment, Cercospora leaf spot incited leaf spotting and defoliation was often lower at the two highest than the two lowest N rates. A reduction in the bract and leaf spot phases of spot anthracnose at the highest N rate was noted in 2004. While spot anthracnose was negatively correlated with trunk diameter in all three years and tree height in 2003 and 2004, Cercospora leaf spot intensity and defoliation were negatively correlated with tree height and trunk diameter in all three and two of three years, respectively. Powdery mildew had no impact on tree height or trunk diameter. Heritage 50W not only controlled spot anthracnose and powdery mildew but also slowed Cercospora leaf spot development sufficiently to enhance leaf retention and fall color.


2012 ◽  
Vol 64 (2) ◽  
pp. 605-611 ◽  
Author(s):  
M. Krstic ◽  
N. Stavretovic ◽  
V. Isajev ◽  
I. Bjelanovic

The study was carried out in Serbian spruce (Picea omorika Panc/Purkyn?) plantations in the western Serbia. The paper presents results of the analysis of crown development. The following elements were analyzed: total tree height, height of the crown base, absolute and relative crown length, maximal crown diameter, coefficient of crown spreading and degree of crown girth. We discuss approaches to the modeling of tree crown growth and development, growing under favorable environmental and stand conditions, without anomalies in development. In order to establish the relationship between analyzed factors, regression analyses were applied. Data fitting was by the analytic method, by the implementation of Prodan?s functions of growth, linear and parabolic function. Received models can be used for the simulation of various growth and developing processes in forest.


2016 ◽  
Vol 58 (1) ◽  
pp. 31-42 ◽  
Author(s):  
Katarzyna Kaźmierczak ◽  
Bogna Zawieja

AbstractThe paper presents an attempt to apply measurable traits of a tree – crown projection area, crown length, diameter at breast height and tree height for classification of 135-year-old oak (QuercusL.) trees into Kraft classes. Statistical multivariate analysis was applied to reach the aim. Empirical material was collected on sample plot area of 0.75 ha, located in 135-year-old oak stand. Analysis of dimensional traits of oaks from 135-year-old stand allows quite certain classification of trees into three groups: pre-dominant, dominant and co-dominant and dominated ones. This seems to be quite promising, providing a tool for the approximation of the biosocial position of tree with no need for assessment in forest. Applied analyses do not allow distinguishing trees belonging to II and III Kraft classes. Unless the eye-estimation-based classification is completed, principal component analysis (PCA) method provided simple, provisional solution for grouping trees from 135-year-old stand into three over-mentioned groups. Discriminant analysis gives more precise results compared with PCA. In the analysed stand, the most important traits for the evaluation of biosocial position were diameter at breast height, crown projection area and height.


Sign in / Sign up

Export Citation Format

Share Document