scholarly journals Evaluation of Non-Isothermal Kinetic Parameters for Pyrolysis of Teak Wood using Model-Fitting Techniques

2021 ◽  
Vol 18 (24) ◽  
pp. 1432
Author(s):  
Adekunle Adeleke ◽  
Peter Ikubanni ◽  
Jamiu Odusote ◽  
Thomas Orhadahwe ◽  
Olumuyiwa Lasode ◽  
...  

Teak wood is one of the prominently used raw material in the construction industry, thus contributing extremely to the biomass waste available in Nigeria. These wastes are usually used for energy generation that requires upgrade into better fuel before application. Hence, the present study evaluates the non-isothermal kinetic parameters for pyrolysis of teak wood using model-fitting techniques. Teak wood dust was subjected to proximate, ultimate and calorific value analyses based on different ASTM standards. The thermal degradation and decomposition behaviour of the teak wood dust was examined using a thermogravimetric analyzer. Pulverized teak (6.5 mg) was heated from 30 to 800 ºC at varying heating rates (5, 10 and 15 ºC) in an environment where 100 mL/min of nitrogen gas was charged in continuously to maintain an inert condition. Avrami-Erofeev, Ginstling-Broushtein (GB) and Mampel models were used to evaluate the kinetic parameters of the pyrolysis of teak wood dust. The teak wood dust contained 7.25 % moisture, 79.26 % volatile matter (VM), 1.74 % ash and 11.75 % fixed carbon. The calorific value of the wood dust was 18.72 MJ/kg. The results of the thermogravimetric analyses depicted that heating rate has no effect on weight loss during the reactive drying zone. However, as the thermal treatment progressed into the active pyrolysis and passive pyrolysis zones, the weight loss decreased with increase in heating rate.  The devolatilization parameters also increased with heating rates except for the maximum conversion. The results of the kinetic parameters evaluation revealed that the GB model was best fit to evaluate the kinetic parameters of teak in the active pyrolysis zone while GB and Mampel models were considered most appropriate for the evaluation of the kinetic parameters in the passive pyrolysis zone. Model-fitting method has the capacity to capture a wide range of fractional conversion at a glance. HIGHLIGHTS Arrhenius parameters in terms of activation energy and pre-exponential factor for the pyrolysis of teak wood while comparing 4 different model-fitting techniques were obtained The α-temperature plot for solid state reaction of teak wood dust was a bell-shape (sigmoidal model) The Avrami-Erofeev and SSS models were unable to capture the overlapping multiple reactions that took place simultaneously at the active pyrolysis zone Higher energy input is needed for devolatilization of teak wood dust to give 10 - 80 % conversion due to higher activation energy at the active pyrolysis zone Ginstling-Broushtein was found to be the best model for evaluating the kinetic parameters at the active pyrolysis zone as it had the highest R2 value GRAPHICAL ABSTRACT

BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 2891-2905
Author(s):  
Arnaldo Martinez ◽  
Lourdes Meriño ◽  
Alberto Albis ◽  
Jorge Ortega

Kinetic analysis for the combustion of three agro-industrial biomass residues (coconut husk, corn husk, and rice husk) was carried out in order to provide information for the generation of energy from them. The analysis was performed using the results of the data obtained by thermogravimetric analysis (TGA) at three heating rates (10, 20, and 30 K/min). The biomass residues were characterized in terms of proximate analysis, elemental analysis, calorific value, lignin content, α-cellulose content, hemicellulose content, and holocellulose content. The biomass fuels were thermally degraded in an oxidative atmosphere. The results showed that the biomass thermal degradation process is comprised of the combustion of hemicellulose, cellulose, and lignin. The kinetic parameters of the distributed activation energy model indicated that the activation energy distribution for the pseudocomponents follows lignin, cellulose, and hemicellulose in descending order. The activation energy values for each set of reactions are similar between the heating rates, which suggests that it is independent of the heating rate between 10 K/min and 30 K/min. For all the biomass samples, the increased heating rate resulted in the overlap of the hemicellulose and cellulose degradation events.


2019 ◽  
Vol 103 ◽  
pp. 02004
Author(s):  
Vivian Beltrán ◽  
Laura V. Martínez ◽  
Andrés López ◽  
María F. Gómez

Thermal degradation and kinetic for biomass materials wood residues and Gorse (Ulex europaeus) have been evaluated under pyrolysis (N2) conditions, using a non-isothermal thermogravimetric method (TGA) from 25°C to 900°C at different heating rates of 10, 20, 30 and 40°C min-1. In DTG curves the temperature peaks at maximum weight loss rate changed with increasing heating rate. The maximum rate of weight loss (%s-1) was obtained at a heating rate of 40°C/min of 0,38 and 0,46 (%s-1) for wood residues and Gorse, respectively. Activation energy calculations were based on selected non-isothermal methods (Kissinger, FWO, KAS, and Starink). For Gorse, the energy activation was 195.41, 194.44, 214.39 and 179.42 kJmol-1 by Kissinger, FWO, KAS, and Starink methods, respectively. In the other hand, the energy activation for wood residues was 176.03, 221.75, 243.08 and 198.26 kJmol-1 by Kissinger, FWO, KAS, and Starink methods, respectively. The results showed that Gorse has a lower activation energy than wood residues, which represents a great potential to be used as a feedstock in thermochemical technologies. The Levelized Cost of Electricity (LCOE) was calculated for gasification of wood residues and Gorse, which was 186 and 169 USD/MWh, respectively.


1988 ◽  
Vol 42 (4) ◽  
pp. 655-658 ◽  
Author(s):  
Randy W. Snyder ◽  
C. Wade Sheen

A method is shown for the determination of kinetic parameters from dynamic FT-IR experiments. The effect heating rate has on the reproducibility of the calculated activation energy is discussed. The curing of PMDA/ODA polyimide at several heating rates is given as an example.


2021 ◽  
Author(s):  
Ruihan Wang ◽  
Qiang Wang ◽  
Zhuangmei Li ◽  
Zhe Liu ◽  
Yong Wu ◽  
...  

Abstract In this work, the weight loss behavior of vitrinite in hongshiwan coal at different heating rates was investigated by thermogravimetric mass spectrometry (TG-MS). Then Coats-Redfern and DAEM models were established to analyze the kinetics of coal pyrolysis. The results show that the weight loss rate of pyrolysis decreased with the increase of heating rate. When the pyrolysis temperature reaches 400–500°C, the weight loss rate reaches the maximum, which is 0.1593, 0.1539, 0.1478 and 0.1414%/°C respectively at the heating rates of 5, 10, 15 and 20°C/min, With the increase of heating rate, the corresponding temperature peaks of the five pyrolysis gases are shifted to the high temperature direction, and the amount of gas escaping is increasing. The trend of higher heating rate delayed the release of volatile compounds was consistent with TG-DTG results. Two kinetic models both prove that the activation energy of coal pyrolysis increases with the increase of temperature. The maximum activation energy occurs between 600 ℃ and 900 ℃, because the multi condensation of coal tar and the re solidification of semi coke will occur in this temperature range.


2019 ◽  
Vol 38 (2) ◽  
pp. 202-212 ◽  
Author(s):  
Ghulam Ali ◽  
Jan Nisar ◽  
Munawar Iqbal ◽  
Afzal Shah ◽  
Mazhar Abbas ◽  
...  

Due to a huge increase in polymer production, a tremendous increase in municipal solid waste is observed. Every year the existing landfills for disposal of waste polymers decrease and the effective recycling techniques for waste polymers are getting more and more important. In this work pyrolysis of waste polystyrene was performed in the presence of a laboratory synthesized copper oxide. The samples were pyrolyzed at different heating rates that is, 5°Cmin−1, 10°Cmin−1, 15°Cmin−1 and 20°Cmin−1 in a thermogravimetric analyzer in inert atmosphere using nitrogen. Thermogravimetric data were interpreted using various model fitting (Coats–Redfern) and model free methods (Ozawa–Flynn–Wall, Kissinger–Akahira–Sunose and Friedman). Thermodynamic parameters for the reaction were also determined. The activation energy calculated applying Coats–Redfern, Ozawa–Flynn–Wall, Kissinger–Akahira–Sunose and Friedman models were found in the ranges 105–148.48 kJmol−1, 99.41–140.52 kJmol−1, 103.67–149.15 kJmol−1 and 99.93–141.25 kJmol−1, respectively. The lowest activation energy for polystyrene degradation in the presence of copper oxide indicates the suitability of catalyst for the decomposition reaction to take place at lower temperature. Moreover, the obtained kinetics and thermodynamic parameters would be very helpful in determining the reaction mechanism of the solid waste in a real system.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 682
Author(s):  
Tomasz Noszczyk ◽  
Arkadiusz Dyjakon ◽  
Jacek A. Koziel

The European Union created a European Green Deal Program (EGDP). This program aims at a sustainable economy through the transformation of the challenges related to climate and the environment. The main goal of EGDP is climate neutrality by 2050. The increase of alternative biomass residues utilization from various food processing industries and cooperation in the energy and waste management sector is required to meet these expectations. Nut shells are one of the lesser-known, yet promising, materials that can be used as an alternative fuel or a pre-treated product to further applications. However, from a thermal conversion point of view, it is important to know the energy properties and kinetic parameters of the considered biowaste. In this study, the energy and kinetic parameters of walnut, hazelnut, peanut, and pistachio shells were investigated. The results showed that raw nut shells are characterized by useful properties such as higher heating value (HHV) at 17.8–19.7 MJ∙kg−1 and moisture content of 4.32–9.56%. After the thermal treatment of nut shells (torrefaction, pyrolysis), the HHV significantly increased up to ca. 30 MJ∙kg−1. The thermogravimetric analysis (TGA) applying three different heating rates (β; 5, 10, and 20 °C∙min−1) was performed. The kinetic parameters were determined using the isothermal model-fitting method developed by Coats–Redfern. The activation energy (Ea) estimated for β = 5 °C∙min−1, was, e.g., 60.3 kJ∙mol−1∙K−1 for walnut, 59.3 kJ∙mol−1∙K−1 for hazelnut, 53.4 kJ∙mol−1∙K−1 for peanut, and 103.8 kJ∙mol−1∙K−1 for pistachio, respectively. Moreover, the increase in the Ea of nut shells was observed with increasing the β. In addition, significant differences in the kinetic parameters of the biomass residues from the same waste group were observed. Thus, characterization of specific nut shell residues is recommended for improved modeling of thermal processes and designing of bioreactors for thermal waste treatment.


2012 ◽  
Vol 550-553 ◽  
pp. 2758-2762 ◽  
Author(s):  
Xi Jie Chu ◽  
Yong Gang Wang ◽  
Li Hong Zhao

The pyrolysis tests of Shenhua coal and Shenhua direct liquefaction residue have been carried out using thermogravimetric at the differential heating rate. The kinetic parameters k and E were calculated using DAEM method. Results show DAME model can describe the pyrolysis behavior of Shenhua coal within the range of 20% to 95%, the activation energy of coal pyrolysis ranges from 53.98 to 279.38 kJ/mol, and DAME model can describe the behavior of Shenhua direct liquefaction residue within the range of 10% to 80%, the activation energy of residue pyrolysis is about 170 kJ/mol. The results of which are basically consistent with the experimental data.


2013 ◽  
Vol 781-784 ◽  
pp. 2009-2012 ◽  
Author(s):  
Hai Yu Meng ◽  
Shu Zhong Wang ◽  
Lin Chen ◽  
Jun Zhao ◽  
Zhi Qiang Wu

The pyrolysis characteristics of pine powder and polyvinyl chloride (PVC), respectively representing the biomass and plastics components of municipal solid waste, were studied in a thermogravimetric analyzer, and the influence of heating rate on pyrolysis characteristics was also investigated. The pyrolysis temperature was heated from ambient up to 900 °C at different heating rates including 10, 20 and 40 °Cžmin-1. The pyrolysis of pine powder was composed of two obvious weight loss phases, which were dehydration and the decomposition of cellulose and hemicellulose. The lignin in pine powder decomposed over a broad temperature range until 900°C. The pyrolysis of PVC was complicated, and included the release of hydrogen chloride (HCl), the formation of hydrocarbons. Besides, the additives in PVC decomposed at about 600 °C. The TG and DTG curves of pyrolysis for pine powder and PVC were similar at different heating rates, however, each weight loss phase of pyrolysis was shifted to high temperature with increasing the heating rate.


Sign in / Sign up

Export Citation Format

Share Document