scholarly journals Effect of Semi-synthetic Andrographolide Analogue-loaded Polymeric Micelles on HN22 Cell Migration

2018 ◽  
Vol 17 (2) ◽  
pp. 88-95
Author(s):  
Teeratas KANSOM ◽  
Rungnapha SAEENG ◽  
Tanasait NGAWHIRUNPAT ◽  
Theerasak ROJANARATA ◽  
Prasopchai TONGLAIROUM ◽  
...  

Semi-synthetic andrographolide (AG) analogue, namely 19-tert-butyldiphenylsilyl-8,17-epoxy andrographolide, or 3A.1, is an anticancer drug. However, the major problem of 3A.1 is poor water solubility hindering its clinical applications. To improve the water solubility and anticancer potency of this analogue, 3A.1-loaded polymeric micelles employing N-naphthyl-N-O-succinyl chitosan (NSCS) as amphiphilic copolymer were prepared by the dropping method. The morphology, particle size, entrapment efficiency (%EE), and loading capacity (%LC) were evaluated. The 3A.1-loaded NSCS micelles were successfully prepared. These micelles were nano-size (66.26 to 102.53 nm) and with a spherical shape, with negative surface charge (-30.50 to -22.23 mV). The 3A.1-loaded NSCS micelles with 40 % drug loading exhibited the maximum values of both %EE (90.84 %) and %LC (25.95 %), indicating that a high amount of 3A.1 could be entrapped into the NSCS micelles. In addition, in vitro anticancer activity and cell migration assay on HN22 cells were evaluated. The 3A.1-loaded NSCS micelles exhibited stronger anticancer effect and cell migration suppression than the free drug. Therefore, these NSCS micelles containing 3A.1 may be potential nanocarriers for the treatment of oral cancer.

2019 ◽  
Vol 14 (4) ◽  
pp. 1934578X1984270 ◽  
Author(s):  
Leniher Castan Chibas ◽  
Priscila Pavini Cintra ◽  
Monique Rodrigues Moreira ◽  
Mirian Oliveira Goulart ◽  
Sérgio Ricardo Ambrósio ◽  
...  

Polyalthic acid (PA) is a diterpene present in several trees of the Copaifera genus, with reported antitumor activity but poor water solubility. The aim of this work was the incorporation of PA in polymeric nanoparticles and the evaluation of the antiproliferative activity of this formulation in tumor (MCF-7) and normal (MCF-10A) breast cell lines. The nanoparticles were obtained by nanoprecipitation, using poly lactic-co-glycolic acid (PLGA) as the main material. Scanning electron microscopy showed nanoparticles with semispherical morphology, and dynamic light scattering measures revealed negative surface charge and average size of 98.64 ± 28 nm. The encapsulation efficiency was 98% and the drug loading was 15.6% ± 0.02%. Treatments with PA nanoparticles reduced cell proliferation more efficiently than free PA and the effect was selective on MCF-7 cells. Comet assay revealed a selective DNA damage induction by the nanoformulation on the tumor cells, which probably caused the antiproliferative effect. Our results show that PA incorporated in PLGA nanoparticles has potential as a selective cytostatic and genotoxic agent against MCF-7 cells.


Drug Research ◽  
2017 ◽  
Vol 67 (12) ◽  
pp. 698-704 ◽  
Author(s):  
Hossein Danafar ◽  
Ali Sharafi ◽  
Sonia Askarlou ◽  
Hamidreza Manjili

AbstractNatural products have been used for the treatment of various diseases such as cancer. Curcumin (CUR) and sulforaphane (SF) have anti-cancer effects, but their application is restricted because of their low water solubility and poor oral bioavailability. To improve the bioavailability and solubility of SF and CUR, we performed an advanced delivery of SF and CUR with PEGylated gold coated Fe3O4 magnetic nanoparticles (PEGylated Fe3O4@Au NPs) to endorse SF and CUR maintenance as an effective and promising antitumor drugs. The structure of the synthesized nanocarrieris evaluated by, transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR). The results revealed that the size of NPs was 20 nm. They were mono-dispersed in water, with high drug-loading capacity and stability. CUR and SF were encapsulated into NPs with loading capacity of 16.32±0.023% and 15.74±0.015% and entrapment efficiency of 74.57±0.14% and 72.20±0.18% respectively. The in-vitro study of SF and CUR loaded PEGylated Fe3O4@Au NPs on human breast adenocarcinoma cell line (SK-BR-3) confirmed that cytotoxicity of SF and CUR can enhance when they are loaded on PEGylated Fe3O4@Au NPs in comparison to Free SF and void CUR. The results of flow cytometry and real-time PCR shown that nano-carriers can increase therapeutic effects of SF and CUR by apoptosis and necrosis induction as well as inhibiting of migration in SK-BR-3 cell line.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 958
Author(s):  
Clarisse Brossard ◽  
Manuel Vlach ◽  
Elise Vène ◽  
Catherine Ribault ◽  
Vincent Dorcet ◽  
...  

Recently, short synthetic peptides have gained interest as targeting agents in the design of site-specific nanomedicines. In this context, our work aimed at developing new tools for the diagnosis and/or therapy of hepatocellular carcinoma (HCC) by grafting the hepatotropic George Baker (GB) virus A (GBVA10-9) and Plasmodium circumsporozoite protein (CPB)-derived peptides to the biocompatible poly(benzyl malate), PMLABe. We successfully synthesized PMLABe derivatives end-functionalized with peptides GBVA10-9, CPB, and their corresponding scrambled peptides through a thiol/maleimide reaction. The corresponding nanoparticles (NPs), varying by the nature of the peptide (GBVA10-9, CPB, and their scrambled peptides) and the absence or presence of poly(ethylene glycol) were also successfully formulated using nanoprecipitation technique. NPs were further characterized by dynamic light scattering (DLS), electrophoretic light scattering (ELS) and transmission electron microscopy (TEM), highlighting a diameter lower than 150 nm, a negative surface charge, and a more or less spherical shape. Moreover, a fluorescent probe (DiD Oil) has been encapsulated during the nanoprecipitation process. Finally, preliminary in vitro internalisation assays using HepaRG hepatoma cells demonstrated that CPB peptide-functionalized PMLABe NPs were efficiently internalized by endocytosis, and that such nanoobjects may be promising drug delivery systems for the theranostics of HCC.


e-Polymers ◽  
2013 ◽  
Vol 13 (1) ◽  
Author(s):  
Marta Przybyslawska ◽  
Aleksandra Amelian ◽  
Katarzyna Winnicka

Abstract The objective of this study was to prepare ciprofloxacin (CIP) encapsulated poly-ε-caprolactone (PCL) microcapsules by the single emulsion oilin- water (o/w) solvent evaporation method. The obtained microcapsules were characterized for size, morphology, drug loading and entrapment efficiency. The physical state of microcapsules was determined by differential scanning calorimetry (DSC) and thermogravimetric analysis (TG). Storage stability, the in vitro drug release and mathematical modeling of drug release were also tested. It was found that obtained microcapsules had spherical shape and their size range was from 57.5 μm to 234.7 μm. The drug loading of microcapsules was from 1.72% to 11.02%. The optimal conditions of the encapsulation process include the drug/polymer ratio 2/1, using homogenizer for 5 min at 15000 rpm to disperse CIP in PCL solution and aqueous phase at pH 5.5. The results of CIP release study indicate that obtained microcapsules might be successfully used for designing sustained release dosage forms.


2018 ◽  
Vol 19 (10) ◽  
pp. 3132 ◽  
Author(s):  
Liang Li ◽  
Na Liang ◽  
Danfeng Wang ◽  
Pengfei Yan ◽  
Yoshiaki Kawashima ◽  
...  

The present investigation aimed to develop a tumor-targeting drug delivery system for paclitaxel (PTX). The hydrophobic deoxycholic acid (DA) and active targeting ligand folic acid (FA) were used to modify water-soluble chitosan (CS). As an amphiphilic polymer, the conjugate FA-CS-DA was synthesized and characterized by Proton nuclear magnetic resonance (1H-NMR) and Fourier-transform infrared spectroscopy (FTIR) analysis. The degree of substitutions of DA and FA were calculated as 15.8% and 8.0%, respectively. In aqueous medium, the conjugate could self-assemble into micelles with the critical micelle concentration of 6.6 × 10−3 mg/mL. Under a transmission electron microscope (TEM), the PTX-loaded micelles exhibited a spherical shape. The particle size determined by dynamic light scattering was 126 nm, and the zeta potential was +19.3 mV. The drug loading efficiency and entrapment efficiency were 9.1% and 81.2%, respectively. X-Ray Diffraction (XRD) analysis showed that the PTX was encapsulated in the micelles in a molecular or amorphous state. In vitro and in vivo antitumor evaluations demonstrated the excellent antitumor activity of PTX-loaded micelles. It was suggested that FA-CS-DA was a safe and effective carrier for the intravenous delivery of paclitaxel.


2020 ◽  
Vol 13 (6) ◽  
pp. 121
Author(s):  
Pataranapa Nimtrakul ◽  
Desmond B. Williams ◽  
Waree Tiyaboonchai ◽  
Clive A. Prestidge

Classified as a Biopharmaceutical Classification System (BCS) class IV drug, amphotericin B (AmB) has low aqueous solubility and low permeability leading to low oral bioavailability. To improve these limitations, this study investigated the potential of AmB-loaded polymeric micelles (AmB-PM) to increase intestinal absorption. AmB-PM were prepared with polyvinyl caprolactam–polyvinyl acetate–polyethylene glycol copolymer (Soluplus®) as a polymeric carrier and used a modified solvent diffusion and microfluidics (NanoAssemblr®) method. AmB-PM have a mean particle size of ~80 nm and are mono-disperse with a polydispersity index <0.2. The entrapment efficiency of AmB was up to 95% and achieved with a high drug loading up to ~20% (w/w) with a total amount of incorporated drug of 1.08 ± 0.01 mg/mL. Importantly, compared to free drug, AmB-PM protected AmB from degradation in an acidic (simulated gastric) environment. Viability studies in Caco-2 cells confirmed the safety/low toxicity of AmB-PM. In vitro cellular absorption studies confirmed that AmB-PM increased AmB uptake in Caco-2 cells 6-fold more than free AmB (i.e., 25% compared with 4% within 30 min). Furthermore, the permeability of AmB across Caco-2 monolayers was significantly faster (2-fold) and more pronounced for AmB-PM in comparison to free drug (3.5-fold increase). Thus, the developed AmB-PM show promise as a novel oral delivery system for AmB and justifies further investigation.


Author(s):  
Rajkumar Aland ◽  
Ganesan M ◽  
P. Rajeswara Rao ◽  
Bhikshapathi D. V. R. N.

The main objective for this investigation is to develop and optimize the solid lipid nanoparticles formulation of acitretin for the effective drug delivery. Acitretin loaded SLNs were prepared by hot homogenization followed by the ultrasonication using Taguchi’s orthogonal array with eight parameters that could affect the particle size and entrapment efficiency. Based on the results from the analyses of the responses obtained from Taguchi design, three different independent variables including surfactant concentration (%), lipid to drug ratio (w/w) and sonication time (s) were selected for further investigation using central composite design. The  lipid Dynasan-116, surfactant poloxomer-188 and co surfactant egg lecithin resulted in better percent drug loading and evaluated for particle size, zeta potential, drug entrapment efficiency, in vitro drug release and stability. All parameters were found to be in an acceptable range. TEM analysis has demonstrated the presence of individual nanoparticles in spherical shape and the results were compatible with particle size measurements.  In vitro drug release of optimized SLN formulation (F2) was found to be 95.63 ± 1.52%, whereas pure drug release was 30.12 after 60 min and the major mechanism of drug release follows first order kinetics release data for optimized formulation (F2) with non-Fickian (anomalous) with a strong correlation coefficient (R2 = 0.94572) of Korsemeyer-Peppas model. The total drug content of acitretin gel formulation was found to 99.86 ± 0.012% and the diameter of gel formulation was 6.9 ± 0.021 cm and that of marketed gel was found to be 5.7 ± 0.06 cm, indicating better spreadability of SLN based gel formulation. The viscosity of gel formulation at 5 rpm was found to be 6.1 x 103 ± 0.4 x 103 cp. The release rate (flux) of acitretin across the membrane and excised skin differs significantly, which indicates about the barrier properties of skin. The flux value for SLN based gel formulation (182.754 ± 3.126 μg cm−2 h−1) was found to be higher than that for marketed gel (122.345 ± 4.786 μg cm−2 h−1). The higher flux and Kp values of SLN based gel suggest that it might be able to enter the skin easily as compared with marketed gel with an advantage of low interfacial tension of the emulsifier film that ensures an excellent contact to the skin. This topically oriented SLN based gel formulation could be useful in providing site-specific dermal treatment of psoriasis


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1210
Author(s):  
Xieguo Yan ◽  
Shiqiang Wang ◽  
Kaoxiang Sun

Schizophrenia, a psychiatric disorder, requires long-term treatment; however, large fluctuations in blood drug concentration increase the risk of adverse reactions. We prepared a long-term risperidone (RIS) implantation system that can stabilize RIS release and established in-vitro and in-vivo evaluation systems. Cumulative release, drug loading, and entrapment efficiency were used as evaluation indicators to evaluate the effects of different pore formers, polymer ratios, porogen concentrations, and oil–water ratios on a RIS implant (RIS-IM). We also built a mathematical model to identify the optimized formulation by stepwise regression. We also assessed the crystalline changes, residual solvents, solubility and stability after sterilization, in-vivo polymer degradation, pharmacokinetics, and tissue inflammation in the case of the optimized formulation. The surface of the optimized RIS microspheres was small and hollow with 134.4 ± 3.5 µm particle size, 1.60 SPAN, 46.7% ± 2.3% implant drug loading, and 93.4% entrapment efficiency. The in-vitro dissolution behavior of RIS-IM had zero-order kinetics and stable blood concentration; no lag time was released for over three months. Furthermore, the RIS-IM was not only non-irritating to tissues but also had good biocompatibility and product stability. Long-acting RIS-IMs with microspheres and film coatings can provide a new avenue for treating schizophrenia.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 904
Author(s):  
Irin Tanaudommongkon ◽  
Asama Tanaudommongkon ◽  
Xiaowei Dong

Most antiretroviral medications for human immunodeficiency virus treatment and prevention require high levels of patient adherence, such that medications need to be administered daily without missing doses. Here, a long-acting subcutaneous injection of lopinavir (LPV) in combination with ritonavir (RTV) using in situ self-assembly nanoparticles (ISNPs) was developed to potentially overcome adherence barriers. The ISNP approach can improve the pharmacokinetic profiles of the drugs. The ISNPs were characterized in terms of particle size, drug entrapment efficiency, drug loading, in vitro release study, and in vivo pharmacokinetic study. LPV/RTV ISNPs were 167.8 nm in size, with a polydispersity index of less than 0.35. The entrapment efficiency was over 98% for both LPV and RTV, with drug loadings of 25% LPV and 6.3% RTV. A slow release rate of LPV was observed at about 20% on day 5, followed by a sustained release beyond 14 days. RTV released faster than LPV in the first 5 days and slower than LPV thereafter. LPV trough concentration remained above 160 ng/mL and RTV trough concentration was above 50 ng/mL after 6 days with one subcutaneous injection. Overall, the ISNP-based LPV/RTV injection showed sustained release profiles in both in vitro and in vivo studies.


Sign in / Sign up

Export Citation Format

Share Document