scholarly journals Soybean Productivity Depending On The Elements Of Organic Cultivation Technology In The Short-Term Crop Rotation Of Ukrainian Polissia

2021 ◽  
Vol 24 (2) ◽  
pp. 77-83
Author(s):  
Viktor Didora ◽  
Mykhailo Kluchevych

Over the past decades, intensive farming has operated under conditions of progressive degradation of the soil cover, maintaining production levels only at the expense of inadequate expenditure of non-renewable energy resources. The soils have acquired irreversible excessive compaction in the sub-arable part of the profile, and the dehumification has acquired a threatening status. The humus content in the soils of Ukraine decreased by almost 25%, and the average annual losses amount to 0.6-0.7 t/ha. Therefore, the search for ways to guarantee the reproduction of soil organic matter, reliable control and restoration of the optimal humus status is extremely relevant. The purpose of the study is to activate natural nitrogen-fixing systems using a mix of green manure and by-products of agricultural crops of short-term leguminous crop rotation. Field experiments were conducted on light grey soils during 2018-2020 in the experimental field of Polissia National University in a leguminous short-term rotation system. This study uses general scientific methods to establish the area of research, plan and lay experiments, conduct observations and analysis; visual – during the implementation of phenological observations; field – to study the relationship with abiotic factors; physiological – to determine the symbiotic effectiveness of preparations of biological origin. The technology of growing agricultural crops in leguminous crop rotation, which ensures the supply of raw materials of organic origin and the accumulation of air nitrogen by root nodule bacteria, has been theoretically substantiated and improved. It is established that one hectare of crop rotation area receives 6.8 tonnes of dry organic raw materials, which corresponds to 78.3 kg/ha of biological nitrogen. It is found out that inoculation of soybean seeds with a preparation of biological origin – Optimise 400, and treatment of soybean crops at BBCH microstages 60-63 with a complex microfertiliser on a chelated basis Nanovit Super+Magnesium Sulphate contributes to the active development of nodule bacteria, the number and weight of which is 81-89 pcs per plant and 510-572 kg/ha. Thus, the active symbiotic potential was 34.2-38.9 thousand kg/day. It is proved that during the growing season soybeans generate 357-400 kg/ha of biological nitrogen in the air, which provides a seed yield of 2.96-2.64 t/ha and leaves 117-160 kg/ha of nitrogen in the soil. The practical value of this study lies in the possibility of enriching the soil with organic matter and the biological form of nitrogen

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Nicholas J. Bouskill ◽  
William J. Riley ◽  
Qing Zhu ◽  
Zelalem A. Mekonnen ◽  
Robert F. Grant

AbstractClimate warming is occurring fastest at high latitudes. Based on short-term field experiments, this warming is projected to stimulate soil organic matter decomposition, and promote a positive feedback to climate change. We show here that the tightly coupled, nonlinear nature of high-latitude ecosystems implies that short-term (<10 year) warming experiments produce emergent ecosystem carbon stock temperature sensitivities inconsistent with emergent multi-decadal responses. We first demonstrate that a well-tested mechanistic ecosystem model accurately represents observed carbon cycle and active layer depth responses to short-term summer warming in four diverse Alaskan sites. We then show that short-term warming manipulations do not capture the non-linear, long-term dynamics of vegetation, and thereby soil organic matter, that occur in response to thermal, hydrological, and nutrient transformations belowground. Our results demonstrate significant spatial heterogeneity in multi-decadal Arctic carbon cycle trajectories and argue for more mechanistic models to improve predictive capabilities.


2018 ◽  
Vol 2 (95) ◽  
pp. 20-25
Author(s):  
O.J. Kachmar ◽  
O.V. Vavrynovych ◽  
O.L. Dubytsky ◽  
A.O. Dubytska ◽  
M.M. Shcherba

Scientific and methodological approaches to the formation of zonal ecologically safe crop rotations as a basic subsystem of farming in the formation of high, stable productivity of agricultural crops are substantiated, while ensuring the reproduction of soil fertility, increasing the efficiency of fertilizer systems and environmental protection. Various rotational crop rotations for introduction in the conditions of the Carpathian region in farms of different specialization and intensity of production are proposed.


2017 ◽  
Vol 1 (92) ◽  
pp. 78-84
Author(s):  
G. Koval ◽  
M. Kaliyevskiy ◽  
V. Yeshchenko ◽  
I. Martyniuk ◽  
N. Martyniuk

The article presents the results of field experiments, where on the basis of podsolized heavy loamy chernozem the influence of replacement of mouldboard ploughing with nonmouldboard cultivation over top soil weediness, weediness at the beginning and end of spring crop vegetation and weed species composition before harve sting were studied. Investigation methods of main fall ploughing under spring crops of five-course rotation: soybeans–rape–wheat–flax–barley at the depths of 15-17, 20-22, 25-27 cm were conducted after post-harvest field tillage. Analysis of data on contamination of the top soil with weed seeds have shown that with the replacement of fall main mouldboard ploughing gwith nonmouldboard cultivation the figure before sowing of all crops withdifferent tillage depthat crop rotation average increased by 131-132%. It caused the increase of actual weed infestation of all crops and at the beginning and end of spring crop vegetationafter different depths of fall nonmouldboard cultivation compared with ploughing at crop rotation average it was 120–132 and 123-138%respectively. Species composition of weeds afterthe replacement of main fall mouldboard ploughing with nonmouldboard cultivation remained mainlyunchanged; although in rape plantings the proportion of white campion and early spring weed sincreased, in wheat plantings– wild mustard andscentless mayweed, insoybean plantings– late spring weeds, in flax plantings– white campion, and in barley plantings– scarlet pimpernel.


Cellulose ◽  
2021 ◽  
Author(s):  
Katri S. Kontturi ◽  
Koon-Yang Lee ◽  
Mitchell P. Jones ◽  
William W. Sampson ◽  
Alexander Bismarck ◽  
...  

Abstract Cellulose nanopapers provide diverse, strong and lightweight templates prepared entirely from sustainable raw materials, cellulose nanofibers (CNFs). Yet the strength of CNFs has not been fully capitalized in the resulting nanopapers and the relative influence of CNF strength, their bonding, and biological origin to nanopaper strength are unknown. Here, we show that basic principles from paper physics can be applied to CNF nanopapers to illuminate those relationships. Importantly, it appeared that ~ 200 MPa was the theoretical maximum for nanopapers with random fibril orientation. Furthermore, we demonstrate the contrast in tensile strength for nanopapers prepared from bacterial cellulose (BC) and wood-based nanofibrillated cellulose (NFC). Endemic amorphous polysaccharides (hemicelluloses) in NFC act as matrix in NFC nanopapers, strengthening the bonding between CNFs just like it improves the bonding between CNFs in the primary cell wall of plants. The conclusions apply to all composites containing non-woven fiber mats as reinforcement. Graphic abstract


Soil Research ◽  
2000 ◽  
Vol 38 (2) ◽  
pp. 345 ◽  
Author(s):  
G. D. Schwenke ◽  
D. R. Mulligan ◽  
L. C. Bell

At Weipa, in Queensland, Australia, sown tree and shrub species sometimes fail to establish on bauxite-mined land, possibly because surface-soil organic matter declines during soil stripping and replacement. We devised 2 field experiments to investigate the links between soil rehabilitation operations, organic matter decline, and revegetation failure. Experiment 1 compared two routinely practiced operations, dual-strip (DS) and stockpile soil, with double-pass (DP), an alternative method, and subsoil only, an occasional result of the DS operation. Other treatments included variations in stripping-time, ripping-time, fertiliser rate, and cultivation. Dilution of topsoil with subsoil, low-grade bauxite, and ironstone accounted for the 46% decline of surface-soil (0–10 cm) organic C in DS compared with pre-strip soil. In contrast, organic C in the surface-soil (0–10 cm) of DP plots (25.0 t/ha) closely resembled the pre-strip area (28.6 t/ha). However, profile (0–60 cm) organic C did not differ between DS (91.5 t/ha), DP (107 t/ha), and pre-strip soil (89.9 t/ha). Eighteen months after plots were sown with native vegetation, surface-soil (0–10 cm) organic C had declined by an average of 9% across all plots. In Experiment 2, we measured the potential for post-rehabilitation decline of organic matter in hand-stripped and replaced soil columns that simulated the DS operation. Soils were incubated in situ without organic inputs. After 1 year’s incubation, organic C had declined by up to 26% and microbial biomass C by up to 61%. The difference in organic C decline between vegetated replaced soils (Expt 1) and bare replaced soils (Expt 2) showed that organic inputs affect levels of organic matter more than soil disturbance. Where topsoil was replaced at the top of the profile (DP) and not ploughed, inputs from volunteer native grasses balanced oxidation losses and organic C levels did not decline.


Sign in / Sign up

Export Citation Format

Share Document