Flat-cutting loosening in the system of fallow cultivation of chernozem soil and weediness of crops

2017 ◽  
Vol 1 (92) ◽  
pp. 78-84
Author(s):  
G. Koval ◽  
M. Kaliyevskiy ◽  
V. Yeshchenko ◽  
I. Martyniuk ◽  
N. Martyniuk

The article presents the results of field experiments, where on the basis of podsolized heavy loamy chernozem the influence of replacement of mouldboard ploughing with nonmouldboard cultivation over top soil weediness, weediness at the beginning and end of spring crop vegetation and weed species composition before harve sting were studied. Investigation methods of main fall ploughing under spring crops of five-course rotation: soybeans–rape–wheat–flax–barley at the depths of 15-17, 20-22, 25-27 cm were conducted after post-harvest field tillage. Analysis of data on contamination of the top soil with weed seeds have shown that with the replacement of fall main mouldboard ploughing gwith nonmouldboard cultivation the figure before sowing of all crops withdifferent tillage depthat crop rotation average increased by 131-132%. It caused the increase of actual weed infestation of all crops and at the beginning and end of spring crop vegetationafter different depths of fall nonmouldboard cultivation compared with ploughing at crop rotation average it was 120–132 and 123-138%respectively. Species composition of weeds afterthe replacement of main fall mouldboard ploughing with nonmouldboard cultivation remained mainlyunchanged; although in rape plantings the proportion of white campion and early spring weed sincreased, in wheat plantings– wild mustard andscentless mayweed, insoybean plantings– late spring weeds, in flax plantings– white campion, and in barley plantings– scarlet pimpernel.

1988 ◽  
Vol 2 (3) ◽  
pp. 257-261 ◽  
Author(s):  
Greg R. Gillespie ◽  
John D. Nalewaja

Field experiments were conducted at two locations during 1984 and 1985 to determine how time of wild oats and wild mustard control influenced spring wheat yield and net economic return. Wheat yield and economic return were greatest when both weed species were controlled with diclofop plus bromoxynil at the 2-leaf wheat stage. Delaying the application of herbicides or controlling only wild oats with diclofop or only wild mustard with MCPA reduced wheat yield and economic benefit from the herbicide treatment. Wild oats and wild mustard competed equally for limiting growth factors in a greenhouse experiment.


2020 ◽  
Vol 34 (6) ◽  
pp. 834-842
Author(s):  
Caio A. C. G. Brunharo ◽  
Seth Watkins ◽  
Bradley D. Hanson

AbstractWeed control in tree nut orchards is a year-round challenge for growers that is particularly intense during winter through summer as a result of competition and interference with management and harvest operations. A common weed control program consists of an application of a winter PRE and POST herbicide mixture, followed by a desiccation treatment in early spring and before harvest. Because most spring and summer treatments depend on a limited number of foliar-applied herbicides, summer-germinating species and/or herbicide-resistant biotypes become troublesome. Previous research has established effective PRE herbicide programs targeting winter glyphosate-resistant weeds. However, more recently, growers have reported difficulties in controlling several summer-germinating grass weeds with documented or suspected resistance to the spring and summer POST herbicide programs. In this context, research was conducted to evaluate a sequential PRE approach to control winter- and summer-germinating orchard weeds. Eight field experiments were conducted in tree nut orchards to evaluate the efficacy of common winter herbicide programs and a sequential herbicide program for control of a key summer grass weed species. In the sequential-application strategy, three foundational herbicide programs applied in the winter were either mixed with pendimethalin, followed with pendimethalin in March, or applied as a split application of pendimethalin in both winter and spring. Results indicate that the addition of pendimethalin enhanced summer grass weed control throughout the crop growing season by up to 31%. Applying all or part of the pendimethalin in the spring improved control of the summer grass weed junglerice by up to 49%. The lower rate of pendimethalin applied in the spring performed as well as the high rate in the winter, suggesting opportunities for reducing herbicide inputs. Tailoring sequential herbicide programs to address specific weed challenges can be a viable strategy for improving orchard weed control without increasing herbicide use in some situations.


2015 ◽  
Vol 29 (4) ◽  
pp. 771-781 ◽  
Author(s):  
R. Joseph Wuerffel ◽  
Julie M. Young ◽  
Joseph L. Matthews ◽  
Vince M. Davis ◽  
William G. Johnson ◽  
...  

Fall-applied residual and spring preplant burn-down herbicide applications are typically used to control winter annual weeds and may also provide early-season residual control of summer annual weed species such as giant ragweed. Field experiments were conducted from 2006 to 2008 in southern Illinois to (1) assess the emergence pattern of giant ragweed, (2) evaluate the efficacy of several herbicides commonly used for soil-residual control of giant ragweed, and (3) investigate the optimal application timing of soil-residual herbicides for control of giant ragweed. Six herbicide treatments were applied at four application timings: early fall, late fall, early spring, and late spring. Giant ragweed first emerged in mid- and late-March in 2007 and 2008, respectively. The duration of emergence varied by year, with 95% of emergence complete in late May of 2008, but not until early July in 2007. Giant ragweed emergence occurred more quickly in plots that received a fall application of glyphosate + 2,4-D compared with the nontreated. Fall-applied residual herbicides did not reduce giant ragweed emergence in 2007 when compared with the nontreated, with the exception of chlorimuron + tribenuron applied in late fall. Giant ragweed control from early- and late-spring herbicide applications was variable by year. In 2007, saflufenacil (50 and 100 g ai ha−1) and simazine applied in early spring reduced giant ragweed densities by 95% or greater through mid-May; however, in 2008, early-spring applications failed to reduce giant ragweed emergence in mid-April. The only treatments that reduced giant ragweed densities by > 80% through early July were late-spring applications of chlorimuron + tribenuron or saflufenacil at 100 g ha−1. Thus, the emergence patterns of giant ragweed in southern Illinois dictates that best management with herbicides would include late-spring applications of soil-residual herbicides just before crop planting and most likely requires subsequent control with foliar or soil-residual herbicides after crop emergence.


1993 ◽  
Vol 7 (2) ◽  
pp. 443-451 ◽  
Author(s):  
George Kapusta ◽  
Ronald F. Krausz

Field experiments were conducted from 1979 to 1989 to determine the influence of conventional, reduced, and no-tillage systems and different herbicide combinations on weed species and population, weed control, and soybean injury, population, and yield. In no-till (NT) non-treated plots, there was an abrupt shift from horseweed as the dominant early spring emerging weed to gray goldenrod in 1985. Following its initial observation, gray goldenrod became the dominant species within 2 yr, with giant foxtail as the only other species observed in these plots. Giant foxtail was the dominant weed species from 1980 to 1989 in conventional till (CT) and reduced-till (RT) plots. There also was a shift in the frequency of occurrence and in density of several broadleaf weed species during the 11-yr study. Most herbicides provided excellent control of all weeds in all tillage systems, especially those that included POST herbicides. There was little difference between glyphosate and paraquat in controlling weeds present at the time of planting in NT. PRE herbicides caused 2 to 9% soybean injury with slightly greater injury occurring in CT and RT than in NT. The POST broadleaf herbicides did not significantly increase soybean injury. There were no differences in soybean population or yield among the herbicide treatments regardless of tillage. There also was no difference in soybean population or yield in NT compared with CT when averaged over all herbicide treatments.


Weed Science ◽  
2016 ◽  
Vol 64 (4) ◽  
pp. 673-682 ◽  
Author(s):  
Nikki R. Burton ◽  
Hugh J. Beckie ◽  
Christian J. Willenborg ◽  
Steven J. Shirtliffe ◽  
Jeff J. Schoenau ◽  
...  

The increasing occurrence of herbicide resistance, along with no new herbicide modes of action developed in over 30 yr, have increased the need for nonherbicidal weed management strategies and tactics. Harvest weed seed control (HWSC) practices have been successfully adopted in Australia to manage problematic weeds. For HWSC to be effective, a high proportion of weed seeds must be retained on the plant at crop maturity. This 2-yr (2014, 2015) study evaluated seed shatter of wild oat, green foxtail, wild mustard, and cleavers in both an early (field pea) and late (spring wheat) maturity crop in field experiments at Scott, Saskatchewan. Seed shatter was assessed using shatter trays collected once a week during crop ripening stage, as well as at two crop maturation or harvest stages (swathing, direct-combining). Seed shatter differed among weed species, but was similar between crops at maturity: ca. 30% for wild oat, 5% for cleavers, < 2% for wild mustard, and < 1% for green foxtail. Overall, seed shatter of wild oat occurred sooner and at greater levels during the growing season compared with the other weed species. Viability of both shattered and plant-retained seeds was relatively high for all species. The small amount of seed shatter of cleavers, wild mustard, and green foxtail suggests that these species may be suitable candidates for HWSC. Due to the amount and timing of wild oat seed shatter, HWSC may not reduce population abundance of this grassy weed.


2002 ◽  
Vol 127 (3) ◽  
pp. 343-348 ◽  
Author(s):  
Diego A. Moreno ◽  
Gemma Víllora ◽  
Joaquín Hernández ◽  
Nicholas Castilla ◽  
Luis Romero Monreal

During three consecutive years of field experiments, three crop-covering treatments [noncovered (C), perforated polyethylene (PO, 500 holes/m2), and a nonwoven polypropylene (AO) sheet] were used to create different environmental conditions for growth of `Nagaoka 50' chinese cabbage [Brassica rapa L. (Pekinensis Group)]. The PO and AO treatments reduced solar irradiance and increased air and root temperatures compared to C plants. Plants were sampled five times each year from transplanting to harvest, and fresh and dry weights, yield at harvest, leaf pH, citric and ascorbic acid concentrations, and cell-wall fractions were determined. The PO floating row cover was the most beneficial for yield and chemical composition of chinese cabbage of the early spring crop in southern Spain, where environmental conditions during an unfavorable season can injure sensitive crops.


2019 ◽  
Vol 37 ◽  
Author(s):  
G. CONCENÇO ◽  
A. ANDRES ◽  
F. SCHREIBER ◽  
A.F. SILVA ◽  
I.S. MOISINHO ◽  
...  

ABSTRACT: The aim of this study was to evaluate the occurrence of weeds in flooded rice areas, as a function of planting system and herbicide programmes in the previous cropping year. The experiment was installed in field conditions, in randomized complete blocks design, arranged in factorial scheme 3 x 2, with eight replications. In factor A, treatments consisted on conventional tillage, minimum tillage and no till cropping systems, coupled to the application (traditional control) or not (semi-ecological system) of herbicides (Factor B). One year after rice cultivation, preceding the planting of the next cropping season, phytosociological evaluations of the weed communities present in the treatments were carried out. We assessed the overall infestation level and weed species composition, which were classified by their respective density, frequency and dominance abilities. We also estimated the diversity coefficients of Simpson and Shannon Weiner, and the sustainability coefficient of Shannon; treatments were also grouped by similarity in weed species composition. Rice growing systems (traditional or semi-ecological) promote remarkable differences in weed occurrence. Herbicide-based crops select specific companion weed species, but crop rotation or winter cover crops are not a sine qua non condition for success since a good herbicide programme is planned. For the Semi ecological system, crop rotation, thick winter soil mulching and association with animal presence and grazing are essential for the short, medium and long-term inhibition of weeds.


Author(s):  
D.V. Bochkarev ◽  
◽  
Yu.N. Nedayborshch ◽  
A.N. Nikolskiy ◽  
A.N. Slugin ◽  
...  

The south of the Non-Chernozem Region is the north-ern boundary of sugar beet production in the Russian Fed-eration. An important factor restraining the growth of crop productivity is the high weed infestation of crops. To devel-op an effective system of crop protection against weeds, it is necessary to study their species composition in order to determine the most occurring and noxious weed species. The available data of geobotanical surveys since the 1930s showed that at different levels of anthropogenic impact the core of the most noxious weed species was formed. Under extensive agriculture conditions, the following species were the most widespread ones: Elytrigia repens(L.) Nevski, Equiseeum arvenseL., Sonchus arvensis L., Convolvulus arvensisL., Cirsium setosum(Willd.) Besser., Artemisia absinthiumL., Chenopodium albumL., Polygonum avicula-reL., Apera spica-ventiL., etc. The introduction of mechan-ical plowing decreased the population density of A. spica-ventiL., Dracocephalum thymiflorumL., and P. aviculareL. Further intensification of agriculture contributed to the narrowing of the weed species composition. Avena fatuaL., not previously found, appeared in abundance in crops and surpassed all other species in terms of number and frequency of occurrence, as well as species resistant to herbicides from the 2.4-D dimethylamine group -Poaceae, Galium aparineL., Tripleurospermum inodorum(L.) Sch. Bip. Couch grass(Elytrigia repens(L.) Nevski) was com-pletely substituted. Currently, the agrophytocenoses con-tain the most harmful rhizome and root-sucker weeds and spring species. Thefollowing early spring weeds are par-ticularly harmful and highly spread in crops: common wild oat (Avena fatuaL.), hemp-nettle species (Galeopsis), and Chenopodium albumL.; overwintering weeds resistant to 2.4-D dimethylamine which seeds accumulate in the soil during the cultivation of other crops in crop rotations where weed control is not so intense.


Author(s):  
Jevgenija Ņečajeva ◽  
Zane Mintāle ◽  
Ieva Dudele ◽  
Anda Isoda-Krasovska ◽  
Jolanta Čūrišķe ◽  
...  

<p class="R-AbstractKeywords"><span lang="EN-GB">Integrated weed management (IWM) is a complex approach to weed control that is based on use of several different methods complementing each other, instead of relying on one single method, like chemical weed control. Weed control methods that can be used as parts of IWM strategy include mechanical weed control, application of herbicides, low tillage, changes in the rate and application time of fertilizers, use of undersown crops and crop rotation. Weed surveys were carried out in 2013 and 2014 in the southeastern part of Latvia. The aim of this study was to assess the effect of crop rotation and other field management practices on weed density and weed species composition using the data collected in the surveys. Survey was carried out in the arable fields of conventional farms within four different size categories. One of the significant factors that explained the variation of weed composition within a field was a proportion of cereals in crop rotation within a four year period. Further surveys are required to estimate the effects of climatic variables. Density-dependence can also be important for practical management decisions for particular weed species and should be investigated.</span></p>


2019 ◽  
Vol 33 (6) ◽  
pp. 808-814
Author(s):  
Blake D. Kerbs ◽  
Andrew G. Hulting ◽  
Drew J. Lyon

AbstractThe adoption of chemical fallow rotations in Pacific Northwest dryland winter wheat production has caused a weed species composition shift in which scouringrush has established in production fields. Thus, there has been interest in identifying herbicides that effectively control scouringrush in winter wheat–chemical fallow cropping systems. Field experiments were established in growers’ fields near Reardan, WA, in 2014, and The Dalles, OR, in 2015. Ten herbicide treatments were applied to mowed and nonmowed plots during chemical fallow rotations. Scouringrush stem densities were quantified the following spring and after wheat harvest at both locations. Chlorsulfuron plus MCPA-ester resulted in nearly 100% control of scouringrush through wheat harvest. Before herbicide application, mowing had no effect on herbicide efficacy. We conclude chlorsulfuron plus MCPA-ester is a commercially acceptable treatment for smooth and intermediate scouringrush control in winter wheat–chemical fallow cropping systems; however, the lack of a positive yield response when scouringrushes were controlled should factor into management decisions.


Sign in / Sign up

Export Citation Format

Share Document