scholarly journals CMOS Compatible Plasmonic Refractive Index Sensor based on Heavily Doped Silicon Waveguide

2020 ◽  
Vol 10 (1) ◽  
pp. 5295-5300
Author(s):  
M. O. Faruque ◽  
R. Al Mahmud ◽  
R. H. Sagor

In this study, a plasmonic refractive index (RI) sensor using heavily n-doped silicon waveguide is designed and numerically simulated using finite element method (FEM). The reported sensor is based on gratings inside a heavily doped silicon waveguide structure instead of a conventional metal-insulator-metal structure. This feature enables the device to overcome the limitations of conventional plasmonic devices like optical losses, polarization management, etc. Besides, it makes the device compatible with Complementary Metal Oxide Semiconductor (CMOS) technology and thus provides an easier way of practical fabrication and incorporation in integrated circuits. The presented sensor has a highest sensitivity of 1208.9nm/RIU and a resolution as small as 0.005 which is comparable with conventional plasmonic sensors reported to date. The main advantage of this plasmonic sensor is that it has a very simple structure and uses silicon instead of metal which provides an easier way of fabrication.

Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1399 ◽  
Author(s):  
Chung-Ting Chou Chao ◽  
Yuan-Fong Chou Chau ◽  
Hung Ji Huang ◽  
N. T. R. N. Kumara ◽  
Muhammad Raziq Rahimi Kooh ◽  
...  

We numerically and theoretically investigate a highly sensitive and tunable plasmonic refractive index sensor that is composed of a metal-insulator-metal waveguide with a side-coupled nanoring, containing silver nanorods using the finite element method. Results reveal that the presence of silver nanorods in the nanoring has a significant impact on sensitivity and tunability performance. It gives a flexible way to tune the system response in the proposed structure. Our designed sensor has a sensitivity of 2080 nm/RIU (RIU is the refractive index unit) along with a figure of merit and a quality factor of 29.92 and 29.67, respectively. The adequate refractive index sensitivity can increase by adding the silver nanorods in a nanoring, which can induce new surface plasmon polaritons (SPPs) modes that cannot be found by a regular nanoring. For a practical application, a valid introduction of silver nanorods in the nanoring can dramatically reduce the dimension of the proposed structure without sacrificing performance.


Author(s):  
Zhaojian Zhang ◽  
Junbo Yang ◽  
Xin He ◽  
Jingjing Zhang ◽  
Jie Huang ◽  
...  

A plasmonic refractive index (RI) sensor based on metal-insulator-metal (MIM) waveguide coupled with concentric double rings resonator (CDRR) is proposed and investigated numerically. Utilizing the novel supermodes of the CDRR, the FWHM of the resonant wavelength can be modulated, and a sensitivity of 1060 nm/RIU with high figure of merit (FOM) 203.8 is realized in the near-infrared region. The unordinary modes as well as the influence of structure parameters on the sensing performance are also discussed. Such plasmonic sensor with simple framework and high optical resolution could be applied to on-chip sensing systems and integrated optical circuits. Besides, the special cases of bio- sensing and triple rings are also discussed.


2021 ◽  
Author(s):  
Ahmad Azuad Yaseer ◽  
Md. Farhad Hassan ◽  
Infiter Tathfif ◽  
Kazi Sharmeen Rashid ◽  
Rakibul Hasan Sagor

Abstract In this paper, a six cavity-based metal-insulator-metal plasmonic sensor is proposed. The designed sensor can detect six primary colors in the visible wavelength. Moreover, the proposed sensor can also sense the change in the refractive index. An initial sensitivity of 648.41 nm/RIU and figure of merit of (FOM) 141.29 are found based on the transmittance profile extracted through the two-dimensional (2D) finite element method (FEM). The structural parameters are optimized to maximize the performance of the modeled device both as a color filter and a refractive index sensor. The optimized FOM, FOM* and sensitivity are recorded as 218.80, 4.771 × 10⁴, and 865.31 nm/RIU, respectively. Due to high FOM and FOM*, this sensor is expected to be utilized as a color filter in various sectors, such as medical, industrial, and forensic, where the light of a particular wavelength is mandatory.


Author(s):  
Zhaojian Zhang ◽  
Junbo Yang ◽  
Xin He ◽  
Jingjing Zhang ◽  
Jie Huang ◽  
...  

A plasmonic refractive index (RI) sensor based on metal-insulator-metal (MIM) waveguide coupled with concentric double rings resonator (CDRR) is proposed and investigated numerically. Utilizing the novel supermodes of the CDRR, the FWHM of the resonant wavelength can be modulated, and a sensitivity of 1060 nm/RIU with high figure of merit (FOM) 203.8 is realized in the near-infrared region. The unordinary modes as well as the influence of structure parameters on the sensing performance are also discussed. Such plasmonic sensor with simple framework and high optical resolution could be applied to on-chip sensing systems and integrated optical circuits.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2097
Author(s):  
Yuan-Fong Chou Chau ◽  
Chung-Ting Chou Chao ◽  
Siti Zubaidah Binti Haji Jumat ◽  
Muhammad Raziq Rahimi Kooh ◽  
Roshan Thotagamuge ◽  
...  

This work proposed a multiple mode Fano resonance-based refractive index sensor with high sensitivity that is a rarely investigated structure. The designed device consists of a metal–insulator–metal (MIM) waveguide with two rectangular stubs side-coupled with an elliptical resonator embedded with an air path in the resonator and several metal defects set in the bus waveguide. We systematically studied three types of sensor structures employing the finite element method. Results show that the surface plasmon mode’s splitting is affected by the geometry of the sensor. We found that the transmittance dips and peaks can dramatically change by adding the dual air stubs, and the light–matter interaction can effectively enhance by embedding an air path in the resonator and the metal defects in the bus waveguide. The double air stubs and an air path contribute to the cavity plasmon resonance, and the metal defects facilitate the gap plasmon resonance in the proposed plasmonic sensor, resulting in remarkable characteristics compared with those of plasmonic sensors. The high sensitivity of 2600 nm/RIU and 1200 nm/RIU can simultaneously achieve in mode 1 and mode 2 of the proposed type 3 structure, which considerably raises the sensitivity by 216.67% for mode 1 and 133.33% for mode 2 compared to its regular counterpart, i.e., type 2 structure. The designed sensing structure can detect the material’s refractive index in a wide range of gas, liquids, and biomaterials (e.g., hemoglobin concentration).


2020 ◽  
Vol 10 (15) ◽  
pp. 5096
Author(s):  
Hao Su ◽  
Shubin Yan ◽  
Xiaoyu Yang ◽  
Jing Guo ◽  
Jinxi Wang ◽  
...  

In this article, a novel refractive index sensor composed of a metal–insulator–metal (MIM) waveguide with two rectangular stubs coupled with an elliptical ring resonator is proposed, the geometric parameters of which are controlled at a few hundreds of nanometer size. The transmission feature of the structure was studied by the finite element method based on electronic design automation (EDA) software COMSOL Multiphysics 5.4 (Stockholm, Sweden). The rectangular stub resonator can be thought of as a Fabry–Perot (FP) cavity, which can facilitate the Fano resonance. The simulation results reveal that the structure has a symmetric Lorentzian resonance, as well as an ultrasharp and asymmetrical Fano resonance. By adjusting the geometrical parameters, the sensitivity and figure of merit (FOM) of the structure can be optimized flexibly. After adjustments and optimization, the maximum sensitivity can reach up to 1550 nm/RIU (nanometer/Refractive Index Unit) and its FOM is 43.05. This structure presented in this article also has a promising application in highly integrated medical optical sensors to detect the concentration of hemoglobin and monitor body health.


Sign in / Sign up

Export Citation Format

Share Document