scholarly journals Design and Analysis of CMOS Full Adder

Author(s):  
Saurabh J Shewale ◽  
Sonal A Shirsath

This paper presents a comparative study of Complementary MOSFET (CMOS) full adder circuits. Our approach is based on hybrid design full adder circuits combined in a single unit. Full adder circuit is an essential component for designing of various digital systems. It is used for different applications such as Digital signal processor, microcontroller, microprocessor and data processing units (DSP). In most of these systems the adder lies in the critical path that determines the overall speed of the system. Full adder is mainly used in VLSI devices like microprocessor for computational purposes. The proposed full adder cell has low power consumption, better area efficiency. Recently, there have been massive research interests in this area due to the growing need for low-power and high-performance computing systems. Our aim is to design and compare the full adder circuit in various technologies and compare their power capacity. By using the hybrid structure of NMOS and PMOS, we have implemented the circuit of full adder.

2020 ◽  
Vol 17 (4) ◽  
pp. 1595-1599
Author(s):  
N. Suresh ◽  
K. Subba Rao ◽  
R. Vassoudevan

Very Large Scale Integrated (VLSI) technology for a widespread use of high performance portable integrated circuit (IC) devices such as MP3, PDA, mobile phones is increasing rapidly. Most of the VLSI applications, such as digital signal processing, image processing and microprocessors, extensively use arithmetic operations. In this research novel low power full adder architecture has been proposed for various applications which uses the advanced adder and multiplier designs. A full-adder is one of the essential components in digital circuit design; many improvements have been made to reduce the architecture of a full adder. In this research modified full adder using GDI technique is proposed to achieve low power consumption. By using GDI cell, the transistor count is greatly reduced, thereby reducing the power consumption and propagation delay while maintaining the low complexity of the logic design. The parameters in terms of Power, Delay, and Surface area are investigated by comparison of the proposed GDI technology with an optimized 90 nm CMOS technology.


VLSI Design ◽  
2001 ◽  
Vol 12 (3) ◽  
pp. 333-348 ◽  
Author(s):  
Mike Lewis ◽  
Linda Brackenbury

Current mobile phone applications demand high performance from the DSP, and future generations are likely to require even greater throughput. However, it is important to balance these processing demands against the requirement of low power consumption for extended battery lifetime. A novel low-power digital signal processor (DSP) architecture CADRE (Configurable Asynchronous DSP for Reduced Energy) addresses these requirements through a multi-level power reduction strategy. A parallel architecture and configurable compressed instruction set meets the throughput requirements without excessive program memory bandwidth, while a large register file reduces the cost of data accesses. Sign-magnitude representation is used for data, to reduce switching activity within the datapath. Asynchronous design gives fine-grained activity control without the complexities of clock gating, and gives low electromagnetic interference. Finally, the operational model of the target application allows for a reduced interrupt structure, simplifying processor design by avoiding the need for exact exceptions.


In the application of digital signal process multipliers play a vital role. With advances in technology, several researchers have tried and try to design multipliers which supply high speed, low power consumption, regularity of layout and thus less space or maybe combination of them in one multiplier factor. Thus, Compact VLSI design for four bit multiplier factor is planned during this paper that is appropriate for low power and high speed applications. Multiplier factor with high performance is achieved through the novel style of hybrid single bit full adder and Dadda algorithmic rule. The important path delay and power consumption of the planned multiplier factor square measure reduced by 65.9% and 24.5% severally when put next with existing multipliers. The planned multiplier factor is synthesized exploitation CADENCE five.1.0 EDA tool and simulated exploitation spectre virtuoso.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Mehedi Hasan ◽  
Abdul Hasib Siddique ◽  
Abdal Hoque Mondol ◽  
Mainul Hossain ◽  
Hasan U. Zaman ◽  
...  

AbstractFull Adder (FA) circuits are integral components in the design of Arithmetic Logic Units (ALUs) of modern computing systems. Recently, there have been massive research interests in this area due to the growing need for low-power and high-performance computing systems. Researchers have proposed a variety of FA cells with diverse design techniques, each having its pros and cons. As a result, a systematic method for performance comparison of FA cells using a common simulation platform has become necessary. In this work, we present an extensive study of FA cells. We have compared the performance of thirty-three (33) existing 1-bit FA cells. The drive powers of these FA cells have been compared by applying a variety of load conditions. In addition, the 1-bit FA cells have been extended to 32-bit structures to test their scalability and to investigate their performance in wide-word structures. We have determined that twenty-one (21) of the thirty-three (33) FA cells cannot operate in a 32-bit structure, even though some of them exhibit excellent performance as a 1-bit cell. The main finding of this research is that the single-bit performance parameters of FA cells should not be considered as the main basis for performance comparison. Any FA cell should be analyzed in a multi-bit structure to determine its practical effectiveness.


Author(s):  
Sai Venkatramana Prasada G.S ◽  
G. Seshikala ◽  
S. Niranjana

Background: This paper presents the comparative study of power dissipation, delay and power delay product (PDP) of different full adders and multiplier designs. Methods: Full adder is the fundamental operation for any processors, DSP architectures and VLSI systems. Here ten different full adder structures were analyzed for their best performance using a Mentor Graphics tool with 180nm technology. Results: From the analysis result high performance full adder is extracted for further higher level designs. 8T full adder exhibits high speed, low power delay and low power delay product and hence it is considered to construct four different multiplier designs, such as Array multiplier, Baugh Wooley multiplier, Braun multiplier and Wallace Tree multiplier. These different structures of multipliers were designed using 8T full adder and simulated using Mentor Graphics tool in a constant W/L aspect ratio. Conclusion: From the analysis, it is concluded that Wallace Tree multiplier is the high speed multiplier but dissipates comparatively high power. Baugh Wooley multiplier dissipates less power but exhibits more time delay and low PDP.


Sign in / Sign up

Export Citation Format

Share Document