scholarly journals Automatic Approach for Detecting the Seizure Using RCCN Architecture

Author(s):  
Dinesh Kumar ◽  
Dr. N. Viswanathan

Seizure is one of the most common neurodegenerative illnesses in humans, and it can result in serious brain damage, strokes, and tumors. Seizures can be detected early, which can assist prevent harm and aid in the treatment of epilepsy sufferers. A seizure prediction system's goal is to correctly detect the pre-ictal brain state, which occurs before a seizure occurs. Patient-independent seizure prediction models have been recognized as a real-world solution to the seizure prediction problem, since they are designed to provide accurate performance across different patients by using the recorded dataset. Furthermore, building such models to adjust to the significant inter-subject variability in EEG data has received little attention. We present a patient-independent deep learning architectures that can train a global function using data from numerous people with its own learning strategy. On the CHB- MIT-EEG dataset, the proposed models reach state-of-the-art accuracy for seizure prediction, with 95.54 percent accuracy. While predicting seizures, the Siamese model trained on the suggested learning technique is able to understand patterns associated to patient differences in data. Our models outperform the competition in terms of patient-independent seizure prediction, and following model adaption, the same architecture may be employed as a patient-specific classifier. We show that the MFCC feature map used by our models contains predictive biomarkers associated to inter-ictal and pre-ictal brain states, and we are the first study to use model interpretation to explain classifier behaviour for the task of seizure prediction.

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253612
Author(s):  
Lars A. Bratholm ◽  
Will Gerrard ◽  
Brandon Anderson ◽  
Shaojie Bai ◽  
Sunghwan Choi ◽  
...  

The rise of machine learning (ML) has created an explosion in the potential strategies for using data to make scientific predictions. For physical scientists wishing to apply ML strategies to a particular domain, it can be difficult to assess in advance what strategy to adopt within a vast space of possibilities. Here we outline the results of an online community-powered effort to swarm search the space of ML strategies and develop algorithms for predicting atomic-pairwise nuclear magnetic resonance (NMR) properties in molecules. Using an open-source dataset, we worked with Kaggle to design and host a 3-month competition which received 47,800 ML model predictions from 2,700 teams in 84 countries. Within 3 weeks, the Kaggle community produced models with comparable accuracy to our best previously published ‘in-house’ efforts. A meta-ensemble model constructed as a linear combination of the top predictions has a prediction accuracy which exceeds that of any individual model, 7-19x better than our previous state-of-the-art. The results highlight the potential of transformer architectures for predicting quantum mechanical (QM) molecular properties.


2014 ◽  
Vol 17 (4) ◽  
Author(s):  
Raymond K. Walters ◽  
Charles Laurin ◽  
Gitta H. Lubke

Epistasis is a growing area of research in genome-wide studies, but the differences between alternative definitions of epistasis remain a source of confusion for many researchers. One problem is that models for epistasis are presented in a number of formats, some of which have difficult-to-interpret parameters. In addition, the relation between the different models is rarely explained. Existing software for testing epistatic interactions between single-nucleotide polymorphisms (SNPs) does not provide the flexibility to compare the available model parameterizations. For that reason we have developed an R package for investigating epistatic and penetrance models, EpiPen, to aid users who wish to easily compare, interpret, and utilize models for two-locus epistatic interactions. EpiPen facilitates research on SNP-SNP interactions by allowing the R user to easily convert between common parametric forms for two-locus interactions, generate data for simulation studies, and perform power analyses for the selected model with a continuous or dichotomous phenotype. The usefulness of the package for model interpretation and power analysis is illustrated using data on rheumatoid arthritis.


BMJ Open ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. e044500
Author(s):  
Yauhen Statsenko ◽  
Fatmah Al Zahmi ◽  
Tetiana Habuza ◽  
Klaus Neidl-Van Gorkom ◽  
Nazar Zaki

BackgroundDespite the necessity, there is no reliable biomarker to predict disease severity and prognosis of patients with COVID-19. The currently published prediction models are not fully applicable to clinical use.ObjectivesTo identify predictive biomarkers of COVID-19 severity and to justify their threshold values for the stratification of the risk of deterioration that would require transferring to the intensive care unit (ICU).MethodsThe study cohort (560 subjects) included all consecutive patients admitted to Dubai Mediclinic Parkview Hospital from February to May 2020 with COVID-19 confirmed by the PCR. The challenge of finding the cut-off thresholds was the unbalanced dataset (eg, the disproportion in the number of 72 patients admitted to ICU vs 488 non-severe cases). Therefore, we customised supervised machine learning (ML) algorithm in terms of threshold value used to predict worsening.ResultsWith the default thresholds returned by the ML estimator, the performance of the models was low. It was improved by setting the cut-off level to the 25th percentile for lymphocyte count and the 75th percentile for other features. The study justified the following threshold values of the laboratory tests done on admission: lymphocyte count <2.59×109/L, and the upper levels for total bilirubin 11.9 μmol/L, alanine aminotransferase 43 U/L, aspartate aminotransferase 32 U/L, D-dimer 0.7 mg/L, activated partial thromboplastin time (aPTT) 39.9 s, creatine kinase 247 U/L, C reactive protein (CRP) 14.3 mg/L, lactate dehydrogenase 246 U/L, troponin 0.037 ng/mL, ferritin 498 ng/mL and fibrinogen 446 mg/dL.ConclusionThe performance of the neural network trained with top valuable tests (aPTT, CRP and fibrinogen) is admissible (area under the curve (AUC) 0.86; 95% CI 0.486 to 0.884; p<0.001) and comparable with the model trained with all the tests (AUC 0.90; 95% CI 0.812 to 0.902; p<0.001). Free online tool at https://med-predict.com illustrates the study results.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2332
Author(s):  
Cecilia Martinez-Castillo ◽  
Gonzalo Astray ◽  
Juan Carlos Mejuto

Different prediction models (multiple linear regression, vector support machines, artificial neural networks and random forests) are applied to model the monthly global irradiation (MGI) from different input variables (latitude, longitude and altitude of meteorological station, month, average temperatures, among others) of different areas of Galicia (Spain). The models were trained, validated and queried using data from three stations, and each best model was checked in two independent stations. The results obtained confirmed that the best methodology is the ANN model which presents the lowest RMSE value in the validation and querying phases 1226 kJ/(m2∙day) and 1136 kJ/(m2∙day), respectively, and predict conveniently for independent stations, 2013 kJ/(m2∙day) and 2094 kJ/(m2∙day), respectively. Given the good results obtained, it is convenient to continue with the design of artificial neural networks applied to the analysis of monthly global irradiation.


2021 ◽  
Author(s):  
Hossein Estiri ◽  
Zachary Strasser ◽  
Sina Rashidian ◽  
Jeffrey Klann ◽  
Kavishwar Wagholikar ◽  
...  

The growing recognition of algorithmic bias has spurred discussions about fairness in artificial intelligence (AI) / machine learning (ML) algorithms. The increasing translation of predictive models into clinical practice brings an increased risk of direct harm from algorithmic bias; however, bias remains incompletely measured in many medical AI applications. Using data from over 56 thousand Mass General Brigham (MGB) patients with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we evaluate unrecognized bias in four AI models developed during the early months of the pandemic in Boston, Massachusetts that predict risks of hospital admission, ICU admission, mechanical ventilation, and death after a SARS-CoV-2 infection purely based on their pre-infection longitudinal medical records. We discuss that while a model can be biased against certain protected groups (i.e., perform worse) in certain tasks, it can be at the same time biased towards another protected group (i.e., perform better). As such, current bias evaluation studies may lack a full depiction of the variable effects of a model on its subpopulations. If the goal is to make a change in a positive way, the underlying roots of bias need to be fully explored in medical AI. Only a holistic evaluation, a diligent search for unrecognized bias, can provide enough information for an unbiased judgment of AI bias that can invigorate follow-up investigations on identifying the underlying roots of bias and ultimately make a change.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7972
Author(s):  
Jee S. Ra ◽  
Tianning Li ◽  
Yan Li

The key research aspects of detecting and predicting epileptic seizures using electroencephalography (EEG) signals are feature extraction and classification. This paper aims to develop a highly effective and accurate algorithm for seizure prediction. Efficient channel selection could be one of the solutions as it can decrease the computational loading significantly. In this research, we present a patient-specific optimization method for EEG channel selection based on permutation entropy (PE) values, employing K nearest neighbors (KNNs) combined with a genetic algorithm (GA) for epileptic seizure prediction. The classifier is the well-known support vector machine (SVM), and the CHB-MIT Scalp EEG Database is used in this research. The classification results from 22 patients using the channels selected to the patient show a high prediction rate (average 92.42%) compared to the SVM testing results with all channels (71.13%). On average, the accuracy, sensitivity, and specificity with selected channels are improved by 10.58%, 23.57%, and 5.56%, respectively. In addition, four patient cases validate over 90% accuracy, sensitivity, and specificity rates with just a few selected channels. The corresponding standard deviations are also smaller than those used by all channels, demonstrating that tailored channels are a robust way to optimize the seizure prediction.


2021 ◽  
Vol 10 ◽  
Author(s):  
Muhlasin Amrullah ◽  
Devi Wulandari

The purpose of this study is to examine several aspects, including: the history of the establishment of SMP Muhammadiyah 3 Pandaan, learning strategies carried out in the midst of the covid 19 pandemic, learning methods, learning challenges, and effectiveness in learning at SMP Muhammadiyah 3 Pandaan. The research process uses descriptive qualitative methods. in the research process using data collection techniques by means of observation, interviews, and photos when the research was conducted. This study aims to determine the learning strategy in SMP Muhammadiyah 3 Pandaan. The strategy used at SMP Muhammadiyah 3 Pandaan in the midst of a pandemic is to use online learning strategies. Learning is carried out using zoom, google meet, wa, and youtube media, this is as an intermediary for learning in the midst of a pandemic, using these strategies can facilitate teaching and learning activities carried out by teachers and students online. SMP Muhammadiyah 3 Pandaan also experienced several challenges in carrying out learning in the midst of the covid-19 pandemic, one of which was that many students did not have the tools to do online learning such as cellphones, laptops, or computers, and some had problems such as having cellphones but many did not. have a quota or it is difficult to reach a signal when online learning is done. Although there are many challenges in carrying out learning activities in the midst of a pandemic like this, it does not eliminate the enthusiasm to keep learning even though you have to be at home online


2021 ◽  
Author(s):  
Iva Halilaj ◽  
Avishek Chatterjee ◽  
Yvonka van Wijk ◽  
Guangyao Wu ◽  
Brice van Eeckhout ◽  
...  

AbstractObjectiveThe current pandemic has led to a proliferation of predictive models being developed to address various aspects of COVID-19 patient care. We aimed to develop an online platform that would serve as an open source repository for a curated subset of such models, and provide a simple interface for included models to allow for online calculation. This platform would support doctors during decision-making regarding diagnoses, prognoses, and follow-up of COVID-19 patients, expediting the models’ transition from research to clinical practice.MethodsIn this proof-of-principle study, we performed a literature search in PubMed and WHO database to find suitable models for implementation on our platform. All selected models were publicly available (peer reviewed publications or open source repository) and had been validated (TRIPOD type 3 or 2b). We created a method for obtaining the regression coefficients if only the nomogram was available in the original publication. All predictive models were transcribed on a practical graphical user interface using PHP 8.0.0, and published online together with supporting documentation and links to the associated articles.ResultsThe open source website https://covid19risk.ai/ currently incorporates nine models from six different research groups, evaluated on datasets from different countries. The website will continue to be populated with other models related to COVID-19 prediction as these become available. This dynamic platform allows COVID-19 researchers to contact us to have their model curated and included on our website, thereby increasing the reach and real-world impact of their work.ConclusionWe have successfully demonstrated in this proof-of-principle study that our website provides an inclusive platform for predictive models related to COVID-19. It enables doctors to supplement their judgment with patient-specific predictions from externally-validated models in a user-friendly format. Additionally, this platform supports researchers in showcasing their work, which will increase the visibility and use of their models.


Sign in / Sign up

Export Citation Format

Share Document