scholarly journals Assessing CO2 emissions of electric vehicles for e-sharing and home care. Two cases developed at Valencian region

Author(s):  
Vanesa Gladys Lo Iacono Ferreira ◽  
Juan Ignacio Torregrosa López ◽  
José Vicente Colomer Ferrándiz

Assessing the environmental impact of transport has been an issue over the last decade. The general framework is established and the followings factors must be considered to obtain results as accurate as possible. Among others (a) the study should considered the entire life cycle if possible: building & materials, usage phase and waste treatment and (b) usage phase assessment must be developed under real conditions in addition to lab tests. When the object of study is urban private transport, some extra lines can be taken into account considering the high impact that environmental initiatives makes in society. The information that local authorities and community receives about the initiative is as relevant as the environmental benefits obtain of the implementation of the project. In this paper, we present the methodology developed to assess CO2 emissions of electric vehicles intendent to car-sharing and home care; two projects developed at Valencian region. We deepen in the relevance and type of information obtain and manage for both studies with a life cycle vision. As a result of usage phase assessment, field test proves to be revealing giving a more realistic vision of the benefits of the project. Theoretical assessments were useful to consider the implementation of a certain project and the necessary support complementing the entity of the study. Resources needed to develop field test might skew results by biasing the study. Attention need to be paid in order to manage resources to set up field tests and avoid setting up field tests due to available resources. Bibliographic studies have shown building, materials and waste treatment depends on available data. Life cycle assessment seems to be the most adequate tool to obtain accurate results although the cost of the assessment is high and might not show significant differences between cars of similar characteristics.DOI: http://dx.doi.org/10.4995/CIT2016.2016.3430

2000 ◽  
Vol 5 (5) ◽  
pp. 306-312 ◽  
Author(s):  
Ryuji Matsuhashi ◽  
Yuki Kudoh ◽  
Yoshikuni Yoshida ◽  
Hisashi Ishitani ◽  
Michifumi Yoshioka ◽  
...  

2020 ◽  
Vol 12 (23) ◽  
pp. 10037
Author(s):  
Malte Scharf ◽  
Ludger Heide ◽  
Alexander Grahle ◽  
Anne Magdalene Syré ◽  
Dietmar Göhlich

In 2020, vehicle sales decreased dramatically due to the COVID-19 pandemic. Therefore, several voices have demanded a vehicle subsidy similar to the “environmental subsidy” in Germany in 2009. The ecological efficiency of vehicle subsidies is controversially discussed. This paper establishes a prognosis of the long-term environmental impacts of various car subsidy concepts. The CO2 emissions of the German car fleet impacted by the purchase subsidies are determined. A balance model of the CO2 emissions of the whole car life cycle is developed. The implementation of different subsidy scenarios directly affects the forecasted composition of the vehicle population and, therefore, the resulting life-cycle assessment. All scenarios compensate the additional emissions required by the production pull-in within the considered period and, hence, reduce the accumulated CO2 emissions until 2030. In the time period 2019–2030 and for a total number of 0.72 million subsidized vehicles—compensating the decrease due to the COVID-19 pandemic—savings of between 1.31 and 7.56 million t CO2 eq. are generated compared to the scenario without a subsidy. The exclusive funding of battery electric vehicles (BEVs) is most effective, with an ecological break-even in 2025.


2021 ◽  
Vol 152 (A3) ◽  
Author(s):  
G A Gratsos ◽  
H N Psaraftis ◽  
P Zachariadis

In order to maintain shipping capacity to serve seaborne trade, new ships have to be built to replace those scrapped. The cost of building, manning, operating, maintaining and repairing a ship throughout its life is borne by society at large through market mechanisms. Gratsos and Zachariadis (2005) had investigated through a cost/benefit analysis how the average annual cost of ship transport varies with the corrosion additions elected at the design stage. The results of that paper clearly indicated that ships built with sufficient corrosion allowances, truly adequate for the ship’s design life, have a lower life cycle cost per annum despite the fact that such ships would carry a slightly smaller quantity of cargo. Furthermore the safety and environmental benefits due to the reduced repairs and extended lifetime of such ships were briefly discussed. The debate of how “robust” a ship should be was also transferred to IMO in the context of Goal Based Standards following a submission by Japan which stated that the increased steel weight of a more robust ship will result in increased CO2 emissions due to a reduced cargo carrying capacity. Greece replied by submitting a summary of the aforementioned paper and preliminary estimations on Life cycle CO2 emissions disputing the Japanese contentions. However, taking onboard the challenge, an update is provided in the present paper, using the final Common Structural Rules (CSR) of the International Association of Classification Societies (IACS) bulk carrier corrosion margins and taking into account the major environmental implications of the heavier ship scantlings for two bulk carrier size brackets, Panamax and Handymax. The results show that the more robust ships would produce less CO2 emissions over their lifetime.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Kezhen Hu ◽  
Jianping Wu ◽  
Mingyu Liu

With increasing concerns about urban air quality and carbon emissions, electric vehicles (EVs) have gained popularity in megacities, especially in Europe and Asia. The energy consumption of EVs has subsequently caught researchers’ attention. However, the exploration of energy consumption of EVs has largely focused on people’s revealed driving behavior and rarely touched on their self-perception of driving styles. In this paper, we developed a more human-centric approach, aiming to investigate how the energy efficiency of EVs is shaped by the driving behavior and driving style in the urban scenario from field test data and driving style questionnaires (DSQs). Field tests were carried out on a designated route for a total of 13 drivers in the city of Beijing, where vehicle operation parameters were recorded under both congested and smooth traffic conditions. DSQs were collected from a larger pool of drivers including the field test drivers to be applied to driving style factor analysis. The results of a correlation analysis demonstrate the dynamic interaction between drivers’ revealed behavior and stated driving style under different traffic conditions. We also proposed an energy consumption prediction model with the fusion of collected driving parameters and DSQ data and the result is promising. We hope that this study would draw inspiration for future research on people’s transitioning driving behavior in an electric-mobility era.


Environments ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 6
Author(s):  
Girts Bumanis ◽  
Aleksandrs Korjakins ◽  
Diana Bajare

Carbon dioxide (CO2) emissions associated with Portland cement (PC) production is ranked as the highest among the construction materials and it is estimated that 8% of the worlds CO2 discharges is due to PC production. As an average, the production of PC clinker including calcination process generates 0.81 kg of carbon dioxide per one kg of cement. Hence, new approaches which limit the negative environmental impacts of cement production and are aimed at the development of advanced methodologies are introduced. Implementation of lower energy consumption materials in production, which could moderately substitute PC in binders, can be addressed as one of the probable methods in mitigating environmental risks. Therefore, alternative binders fit into the most promising solutions. Present research investigates the environmental impact of the building sector, if an alternative to PC binder is used. Life cycle assessment (LCA) was used in this research to assess the environmental impact of the alternative ternary gypsum-PC-pozzolan binder in the production of mortar, and the environmental benefits were calculated and compared to traditional cement-based building materials. Phosphogypsum was considered as a secondary raw material, as in the current approach it is collected in open stacks bringing environmental concerns. SimaPro LCA software with the Ecoinvent database was used for most of the calculation processes. Results indicate that with alternative binders up to 30% of energy can be saved and 57 wt.% of CO2 emissions can be reduced, bringing positive impact on the construction industries contribution to the environment.


2021 ◽  
Author(s):  
Nuri Cihat Onat ◽  
Galal M. Abdella ◽  
Murat Kucukvar ◽  
Adeeb A. Kutty ◽  
Munera Al‐Nuaimi ◽  
...  

2021 ◽  
Vol 13 (10) ◽  
pp. 5726
Author(s):  
Aleksandra Wewer ◽  
Pinar Bilge ◽  
Franz Dietrich

Electromobility is a new approach to the reduction of CO2 emissions and the deceleration of global warming. Its environmental impacts are often compared to traditional mobility solutions based on gasoline or diesel engines. The comparison pertains mostly to the single life cycle of a battery. The impact of multiple life cycles remains an important, and yet unanswered, question. The aim of this paper is to demonstrate advances of 2nd life applications for lithium ion batteries from electric vehicles based on their energy demand. Therefore, it highlights the limitations of a conventional life cycle analysis (LCA) and presents a supplementary method of analysis by providing the design and results of a meta study on the environmental impact of lithium ion batteries. The study focuses on energy demand, and investigates its total impact for different cases considering 2nd life applications such as (C1) material recycling, (C2) repurposing and (C3) reuse. Required reprocessing methods such as remanufacturing of batteries lie at the basis of these 2nd life applications. Batteries are used in their 2nd lives for stationary energy storage (C2, repurpose) and electric vehicles (C3, reuse). The study results confirm that both of these 2nd life applications require less energy than the recycling of batteries at the end of their first life and the production of new batteries. The paper concludes by identifying future research areas in order to generate precise forecasts for 2nd life applications and their industrial dissemination.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1172
Author(s):  
Hafiz Haq ◽  
Petri Välisuo ◽  
Seppo Niemi

Industrial symbiosis networks conventionally provide economic and environmental benefits to participating industries. However, most studies have failed to quantify waste management solutions and identify network connections in addition to methodological variation of assessments. This study provides a comprehensive model to conduct sustainable study of industrial symbiosis, which includes identification of network connections, life cycle assessment of materials, economic assessment, and environmental performance using standard guidelines from the literature. Additionally, a case study of industrial symbiosis network from Sodankylä region of Finland is implemented. Results projected an estimated life cycle cost of €115.20 million. The symbiotic environment would save €6.42 million in waste management cost to the business participants in addition to the projected environmental impact of 0.95 million tonne of CO2, 339.80 tonne of CH4, and 18.20 tonne of N2O. The potential of further cost saving with presented optimal assessment in the current architecture is forecast at €0.63 million every year.


2021 ◽  
Vol 13 (6) ◽  
pp. 3199
Author(s):  
Laith Shalalfeh ◽  
Ashraf AlShalalfeh ◽  
Khaled Alkaradsheh ◽  
Mahmoud Alhamarneh ◽  
Ahmad Bashaireh

An increasing number of electric vehicles (EVs) are replacing gasoline vehicles in the automobile market due to the economic and environmental benefits. The high penetration of EVs is one of the main challenges in the future smart grid. As a result of EV charging, an excessive overloading is expected in different elements of the power system, especially at the distribution level. In this paper, we evaluate the impact of EVs on the distribution system under three loading conditions (light, intermediate, and full). For each case, we estimate the maximum number of EVs that can be charged simultaneously before reaching different system limitations, including the undervoltage, overcurrent, and transformer capacity limit. Finally, we use the 19-node distribution system to study these limitations under different loading conditions. The 19-node system is one of the typical distribution systems in Jordan. Our work estimates the upper limit of the possible EV penetration before reaching the system stability margins.


Sign in / Sign up

Export Citation Format

Share Document